Skip to main content Accessibility help
×
Home

Rapoport–Zink spaces for spinor groups

  • Benjamin Howard (a1) and Georgios Pappas (a2)

Abstract

After the work of Kisin, there is a good theory of canonical integral models of Shimura varieties of Hodge type at primes of good reduction. The first part of this paper develops a theory of Hodge type Rapoport–Zink formal schemes, which uniformize certain formal completions of such integral models. In the second part, the general theory is applied to the special case of Shimura varieties associated with groups of spinor similitudes, and the reduced scheme underlying the Rapoport–Zink space is determined explicitly.

Copyright

References

Hide All
[Asg02] Asgari, M., Local L-functions for split spinor groups , Canad. J. Math. 54 (2002), 673693; MR 1913914 (2003i:11062).
[Bas74] Bass, H., Clifford algebras and spinor norms over a commutative ring , Amer. J. Math. 96 (1974), 156206; MR 0360645 (50 #13092).
[Ber96] Berthelot, P., Cohomologie rigide et cohomologie rigide à supports propres. Première partie. Preprint (1996), IRMAR 96-03, available at http://perso.univ-rennesl.fr/pierre.berthelot.
[BBM82] Berthelot, P., Breen, L. and Messing, W., Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930 (Springer, Berlin, 1982); MR 667344 (85k:14023).
[BM90] Berthelot, P. and Messing, W., Théorie de Dieudonné cristalline. III. Théorèmes d’équivalence et de pleine fidélité , in The Grothendieck Festschrift, Vol. I, Progress in Mathematics, vol. 86 (Birkhäuser, Boston, 1990), 173247; MR 1086886 (92h:14012).
[BS15] Bhatt, B. and Scholze, P., Projectivity of the Witt vector affine Grassmannian. Preprint (2015), arXiv:1507.06490.
[CKV15] Chen, M., Kisin, M. and Viehmann, E., Connected components of affine Deligne–Lusztig varieties in mixed characteristic , Compositio Math. 151 (2015), 16971762; MR 3406443.
[CV15] Chen, M. and Viehmann, E., Affine Deligne–Lusztig varieties and the action of  $J$ . Preprint (2015), arXiv:1507.02806.
[DOR10] Dat, J.-F., Orlik, S. and Rapoport, M., Period domains over finite and p-adic fields, Cambridge Tracts in Mathematics, vol. 183 (Cambridge University Press, Cambridge, 2010); MR 2676072 (2012a:22026).
[deJ95] de Jong, A. J., Crystalline Dieudonné module theory via formal and rigid geometry , Publ. Math. Inst. Hautes Études Sci. 82 (1995), 596; MR 1383213 (97f:14047).
[Del79] Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques , in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 247289; MR 546620 (81i:10032).
[Dri76] Drinfel’d, V. G., Coverings of p-adic symmetric domains , Funkcional. Anal. i Priložen. 10 (1976), 2940; MR 0422290 (54 #10281).
[EGAIV] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I , Publ. Math. Inst. Hautes Études Sci. 20 (1964), 5251; MR 0173675 (30 #3885).
[Fal99] Faltings, G., Integral crystalline cohomology over very ramified valuation rings , J. Amer. Math. Soc. 12 (1999), 117144; MR 1618483 (99e:14022).
[Ger08] Gerstein, L., Basic quadratic forms, Graduate Studies in Mathematics, vol. 90 (American Mathematical Society, Providence, RI, 2008); MR 2396246 (2009e:11064).
[GHKR06] Görtz, U., Haines, T., Kottwitz, R. and Reuman, D., Dimensions of some affine Deligne–Lusztig varieties , Ann. Sci. Éc. Norm. Supér. (4) 39 (2006), 467511; MR 2265676 (2008e:14068).
[GH15] Görtz, U. and He, X., Basic loci of Coxeter type in Shimura varieties , Camb. J. Math. 3 (2015), 323353; MR 3393024.
[Ham16] Hamacher, P., The almost product structure of Newton strata in the Deformation space of a Barsotti–Tate group with crystalline Tate tensors. Preprint (2016), arXiv:1601.03131.
[HP14] Howard, B. and Pappas, G., On the supersingular locus of the GU(2,2) Shimura variety , Algebra Number Theory 8 (2014), 16591699; MR 3272278.
[Kim13] Kim, W., Rapoport–Zink spaces of Hodge type. Preprint (2013), arXiv:1308.5537.
[Kim14] Kim, W., Rapoport–Zink uniformization of Hodge-type Shimura varieties. Preprint (2014).
[Kis10] Kisin, M., Integral models for Shimura varieties of abelian type , J. Amer. Math. Soc. 23 (2010), 9671012; MR 2669706.
[Kis13] Kisin, M., Mod $p$ points on Shimura varieties of abelian type, J. Amer. Math. Soc., to appear. Preprint (2013).
[KP15] Kisin, M. and Pappas, G., Integral models for Shimura varieties with parahoric level structure. Preprint (2015), arXiv:1512.01149.
[Kit93] Kitaoka, Y., Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106 (Cambridge University Press, Cambridge, 1993); MR 1245266 (95c:11044).
[Kot84] Kottwitz, R., Shimura varieties and twisted orbital integrals , Math. Ann. 269 (1984), 287300; MR 761308 (87b:11047).
[Kot85] Kottwitz, R., Isocrystals with additional structure , Compositio Math. 56 (1985), 201220; MR 809866 (87i:14040).
[Kot92] Kottwitz, R., Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373444; MR 1124982 (93a:11053).
[Kud04] Kudla, S. S., Special cycles and derivatives of Eisenstein series , in Heegner points and Rankin L-series, Mathematical Sciences Research Institute Publications, vol. 49 (Cambridge University Press, Cambridge, 2004), 243270; MR 2083214 (2005g:11108).
[KR99] Kudla, S. S. and Rapoport, M., Arithmetic Hirzebruch–Zagier cycles , J. reine angew. Math. 515 (1999), 155244; MR 1717613 (2002e:11076a).
[KR00] Kudla, S. S. and Rapoport, M., Cycles on Siegel threefolds and derivatives of Eisenstein series , Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), 695756; MR 1834500 (2002e:11076b).
[Lan02] Lang, S., Algebra, Graduate Texts in Mathematics, vol. 211, third edition (Springer, New York, 2002); MR 1878556 (2003e:00003).
[Mad15] Madapusi Pera, K., The Tate conjecture for K3 surfaces in odd characteristic , Invent. Math. 201 (2015), 625668; MR 3370622.
[Mad16] Madapusi Pera, K., Integral canonical models for spin Shimura varieties , Compositio Math. 152 (2016), 769824; MR 3484114.
[Mat80] Matsumura, H., Commutative algebra, Mathematics Lecture Note Series, vol. 56, second edition (Benjamin/Cummings Publishing Co., Reading, MA, 1980); MR 575344 (82i:13003).
[Mes72] Messing, W., The crystals associated to Barsotti–Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, vol. 264 (Springer, Berlin, New York, 1972); MR 0347836 (50 #337).
[Moo98] Moonen, B., Models of Shimura varieties in mixed characteristics , in Galois representations in arithmetic algebraic geometry (Durham, 1996), London Mathematical Society Lecture Note Series, vol. 254 (Cambridge University Press, Cambridge, 1998), 267350; MR 1696489 (2000e:11077).
[Nis82] Nisnevich, Y. A., Étale cohomology and arithmetic of semisimple groups, ProQuest LLC, Ann Arbor, MI, 1982, PhD thesis, Harvard University; MR 2632405.
[Ogu84] Ogus, A., F-isocrystals and de Rham cohomology. II. Convergent isocrystals , Duke Math. J. 51 (1984), 765850; MR 771383 (86j:14012).
[PR94] Platonov, V. and Rapinchuk, A., Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139 (Academic Press, Boston, 1994), translated from the 1991 Russian original by R. Rowen; MR 1278263 (95b:11039).
[Rap05] Rapoport, M., A guide to the reduction modulo p of Shimura varieties , in Automorphic forms. I, Astérisque, vol. 298 (Société Mathématique de France, Paris, 2005), 271318; MR 2141705 (2006c:11071).
[RR96] Rapoport, M. and Richartz, M., On the classification and specialization of F-isocrystals with additional structure , Compositio Math. 103 (1996), 153181; MR 1411570 (98c:14015).
[RTW14] Rapoport, M., Terstiege, U. and Wilson, S., The supersingular locus of the Shimura variety for GU(1, n - 1) over a ramified prime , Math. Z. 276 (2014), 11651188; MR 3175176.
[RV14] Rapoport, M. and Viehmann, E., Towards a theory of local Shimura varieties , Münster J. Math. 7 (2014), 273326; MR 3271247.
[RZ96] Rapoport, M. and Zink, Th., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996); MR 1393439 (97f:14023).
[SW13] Scholze, P. and Weinstein, J., Moduli of p-divisible groups , Camb. J. Math. 1 (2013), 145237; MR 3272049.
[Ser73] Serre, J.-P., A course in arithmetic, Graduate Texts in Mathematics, vol. 7 (Springer, New York, 1973), translated from the French; MR 0344216 (49 #8956).
[Shi10] Shimura, G., Arithmetic of quadratic forms, Springer Monographs in Mathematics (Springer, New York, 2010); MR 2665139 (2011m:11003).
[Vie14] Viehmann, E., Truncations of level 1 of elements in the loop group of a reductive group , Ann. of Math. (2) 179 (2014), 10091040; MR 3171757.
[Vol10] Vollaard, I., The supersingular locus of the Shimura variety for GU(1, s) , Canad. J. Math. 62 (2010), 668720; MR 2666394.
[VW11] Vollaard, I. and Wedhorn, T., The supersingular locus of the Shimura variety of GU(1, n - 1) II , Invent. Math. 184 (2011), 591627; MR 2800696 (2012j:14035).
[Wor13] Wortmann, D., The $\unicode[STIX]{x1D707}$ -ordinary locus for Shimura varieties of Hodge type. Preprint (2013), arXiv:1310.6444.
[Zha13] Zhang, C., Ekedahl–Oort strata for good reductions of Shimura varieties of Hodge type. Preprint (2013), arXiv:1312.4869.
[Zha15] Zhang, C., Stratifications and foliations for good reductions of Shimura varieties of Hodge type. Preprint (2015), arXiv:1512.08102.
[Zhu17] Zhu, X., Affine Grassmannians and the geometric Satake in mixed characteristic , Ann. of Math. (2) 185 (2017), 403492.
[Zin01] Zink, Th., Windows for displays of p-divisible groups, Moduli of abelian varieties (Texel Island, 1999), Progress in Mathematics, vol. 195 (Birkhäuser, Basel, 2001), 491518; MR 1827031 (2002c:14073).
[Zin02] Zink, Th., The display of a formal p-divisible group , in Cohomologies p-adiques et applications arithmétiques, I, Astérisque, vol. 278 (Société Mathématique de France, Paris, 2002), 127248; MR 1922825 (2004b:14083).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Rapoport–Zink spaces for spinor groups

  • Benjamin Howard (a1) and Georgios Pappas (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.