Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T05:22:57.474Z Has data issue: false hasContentIssue false

Quivers with potentials associated to triangulated surfaces, Part III: tagged triangulations and cluster monomials

Published online by Cambridge University Press:  01 November 2012

Giovanni Cerulli Irelli
Affiliation:
Mathematisches Institut, Universität Bonn, Bonn, 53115, Germany (email: cerulli@math.uni-bonn.de)
Daniel Labardini-Fragoso
Affiliation:
Mathematisches Institut, Universität Bonn, Bonn, 53115, Germany (email: labardini@math.uni-bonn.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To each tagged triangulation of a surface with marked points and non-empty boundary we associate a quiver with potential in such a way that whenever we apply a flip to a tagged triangulation the Jacobian algebra of the quiver with potential (QP) associated to the resulting tagged triangulation is isomorphic to the Jacobian algebra of the QP obtained by mutating the QP of the original one. Furthermore, we show that any two tagged triangulations are related by a sequence of flips compatible with QP-mutation. We also prove that, for each of the QPs constructed, the ideal of the non-completed path algebra generated by the cyclic derivatives is admissible and the corresponding quotient is isomorphic to the Jacobian algebra. These results, which generalize some of the second author’s previous work for ideal triangulations, are then applied to prove properties of cluster monomials, like linear independence, in the cluster algebra associated to the given surface by Fomin, Shapiro and Thurston (with an arbitrary system of coefficients).

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[Ami09]Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), 25252590 math.RT/0805.1035.CrossRefGoogle Scholar
[Ami11]Amiot, C., On generalized cluster categories, in Representations of algebras and related topics, EMS Series of Congress Reports (European Mathematical Society, Zürich, 2011), 1–53.CrossRefGoogle Scholar
[BFZ05]Berenstein, A., Fomin, S. and Zelevinsky, A., Cluster algebras III: upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 152 math.RT/0305434.CrossRefGoogle Scholar
[CK08]Caldero, P. and Keller, B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169211.CrossRefGoogle Scholar
[Cer08]Cerulli Irelli, G., Structural theory of rank three cluster algebras of affine type, PhD thesis, University of Padova (2008).Google Scholar
[Cer11]Cerulli Irelli, G., Positivity in skew-symmetric cluster algebras of finite type, Preprint (2011), math.RA/1102.3050.Google Scholar
[Cer12]Cerulli Irelli, G., Cluster algebras of type A (1)2, Algebr. Represent. Theory 15 (2012), 9771021.CrossRefGoogle Scholar
[CKLP12]Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D. and Plamondon, P.-G., Linear independence of cluster monomials for skew-symmetric cluster algebras, Preprint (2012), math.RT/1203.1307.Google Scholar
[DWZ08]Derksen, H., Weyman, J. and Zelevinsky, A., Quivers with potentials and their representations I: mutations, Selecta Math. (N.S.) 14 (2008), 59119 math.RA/0704.0649.CrossRefGoogle Scholar
[DWZ10]Derksen, H., Weyman, J. and Zelevinsky, A., Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749790 math.RA/0904.0676.CrossRefGoogle Scholar
[DT11]Dupont, G. and Thomas, H., Atomic bases in cluster algebras of types A and , Preprint (2011), math.RA/1106.3758.Google Scholar
[FST08]Fomin, S., Shapiro, M. and Thurston, D., Cluster algebras and triangulated surfaces, part I: cluster complexes, Acta Math. 201 (2008), 83146 math.RA/0608367.CrossRefGoogle Scholar
[FZ02]Fomin, S. and Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002), 497529 math.RT/0104151.CrossRefGoogle Scholar
[FZ03]Fomin, S. and Zelevinsky, A., Cluster algebras II: finite type classification, Invent. Math. 154 (2003), 63121 math.RA/0208229.CrossRefGoogle Scholar
[FZ07]Fomin, S. and Zelevinsky, A., Cluster algebras IV: coefficients, Compositio Math. 143 (2007), 112164 math.RA/0602259.CrossRefGoogle Scholar
[FHS82]Freedman, M., Hass, J. and Scott, P., Closed geodesics on surfaces, Bull. Lond. Math. Soc. 14 (1982), 385391.CrossRefGoogle Scholar
[FK10]Fu, C. and Keller, B., On cluster algebras with coefficients and 2-Calabi–Yau categories, Trans. Amer. Math. Soc. 362 (2010), 859895 math.RT/0710.3152.CrossRefGoogle Scholar
[HL10]Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265341 math.QA/0903.1452.CrossRefGoogle Scholar
[Lab09a]Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3) 98 (2009), 797839 math.RT/0803.1328.CrossRefGoogle Scholar
[Lab09b]Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, part II: arc representations, Preprint (2009), math.RT/0909.4100.Google Scholar
[Mos88]Mosher, L., Tiling the projective foliation space of a punctured surface, Trans. Amer. Math. Soc. 306 (1988), 170.CrossRefGoogle Scholar
[MSW11a]Musiker, G., Schiffler, R. and Williams, L., Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 22412308 math.CO/0906.0748.CrossRefGoogle Scholar
[MSW11b]Musiker, G., Schiffler, R. and Williams, L., Bases for cluster algebras from surfaces, Preprint (2011), math.RT/1110.4364.Google Scholar
[Nag11]Nagao, K., Donaldson–Thomas theory and cluster algebras, Preprint (2011), math.AG/1002.4884v2.Google Scholar
[Nak11]Nakajima, H., Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71126 math.QA/0905.0002.CrossRefGoogle Scholar
[Pla11a]Plamondon, P.-G., Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), 139 doi:10.1016/j.aim.2010.12.010, math.RT/1002.4956.CrossRefGoogle Scholar
[Pla11b]Plamondon, P.-G., Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compositio Math. 147 (2011), 19211954 math.RT/1004.0830.CrossRefGoogle Scholar
[Pla11c]Plamondon, P.-G., Catégories amassées aux espaces de morphismes de dimension infinie, applications, PhD thesis, Université Paris Diderot - Paris 7 (2011).Google Scholar
[SZ04]Sherman, P. and Zelevinsky, A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947974 math.RT/0307082.CrossRefGoogle Scholar
[Zel07]Zelevinsky, A., Mutations for quivers with potentials: Oberwolfach talk, April 2007, Preprint (2007), math.RA/0706.0822.Google Scholar