Skip to main content Accessibility help
×
Home

Quivers of monoids with basic algebras

  • Stuart Margolis (a1) (a2) and Benjamin Steinberg (a3) (a4)

Abstract

We compute the quiver of any finite monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO) to representation-theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of ℛ-trivial monoids, we also provide a semigroup-theoretic description of the projective indecomposable modules and compute the Cartan matrix.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quivers of monoids with basic algebras
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quivers of monoids with basic algebras
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quivers of monoids with basic algebras
      Available formats
      ×

Copyright

References

Hide All
[AM06]Aguiar, M. and Mahajan, S., Coxeter groups and Hopf algebras, Fields Institute Monographs, vol. 23 (American Mathematical Society, Providence, RI, 2006), with a foreword by Nantel Bergeron.
[Alm94]Almeida, J., Finite semigroups and universal algebra, Series in Algebra, vol. 3 (World Scientific, River Edge, NJ, 1994), translated from the 1992 Portuguese original and revised by the author.
[AMSV09]Almeida, J., Margolis, S., Steinberg, B. and Volkov, M., Representation theory of finite semigroups, semigroup radicals and formal language theory, Trans. Amer. Math. Soc. 361 (2009), 14291461.
[AS09]Almeida, J. and Steinberg, B., Matrix mortality and the Černý-Pin conjecture, in Developments in language theory, Lecture Notes in Computer Science, vol. 5583 (Springer, Berlin, 2009), 6780.
[ASS06]Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65 (Cambridge University Press, Cambridge, 2006).
[AD10]Athanasiadis, C. A. and Diaconis, P., Functions of random walks on hyperplane arrangements, Adv. Appl. Math. 45 (2010), 410437.
[AGGS04]Auinger, K., Gomes, G. M. S., Gould, V. and Steinberg, B., An application of a theorem of Ash to finite covers, Studia Logica 78 (2004), 4557.
[AR97]Auslander, M. and Reiten, I., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36 (Cambridge University Press, Cambridge, 1997), corrected reprint of the 1995 original.
[Ben98]Benson, D. J., Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, second edition (Cambridge University Press, Cambridge, 1998).
[BBBS10]Berg, C., Bergeron, N., Bhargava, S. and Saliola, F., Primitive orthogonal idempotents for R-trivial monoids (2010), http://arxiv.org/abs/1009.4943v1.
[BHR99]Bidigare, P., Hanlon, P. and Rockmore, D., A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J. 99 (1999), 135174.
[Bjö08]Björner, A., Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries, in Building bridges, Bolyai Society Mathematical Studies, vol. 19 (Springer, Berlin, 2008), 165203.
[Bjo09]Björner, A., Note: Random-to-front shuffles on trees, Electron. Commun. Probab. 14 (2009), 3641.
[Bor94]Borceux, F., Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50 (Cambridge University Press, Cambridge, 1994).
[Bri11]Brimacombe, B., The representation theory of the incidence algebra of an inverse semigroup, PhD thesis, Carleton University, Ottawa (2011).
[Bro00]Brown, K. S., Semigroups, rings, and Markov chains, J. Theoret. Probab. 13 (2000), 871938.
[Bro04]Brown, K. S., Semigroup and ring theoretical methods in probability, in Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Institute Communications, vol. 40 (American Mathematical Society, Providence, RI, 2004), 326.
[BD98]Brown, K. S. and Diaconis, P., Random walks and hyperplane arrangements, Ann. Probab. 26 (1998), 18131854.
[CE99]Cartan, H. and Eilenberg, S., Homological algebra, Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1999), with an appendix by David A. Buchsbaum, reprint of the 1956 original.
[Car86]Carter, R. W., Representation theory of the 0-Hecke algebra, J. Algebra 104 (1986), 89103.
[CKKSTT07]Chattopadhyay, A., Krebs, A., Koucký, M., Szegedy, M., Tesson, P. and Thérien, D., Languages with bounded multiparty communication complexity, in STACS 2007, Lecture Notes in Computer Science, vol. 4393 (Springer, Berlin, 2007), 500511.
[Cli41]Clifford, A. H., Semigroups admitting relative inverses, Ann. of Math. (2) 42 (1941), 10371049.
[CP61]Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7 (American Mathematical Society, Providence, RI, 1961).
[CPS88]Cline, E., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight categories, J. reine. angrew. Math. 391 (1988), 8599.
[Coh03]Cohn, P. M., Basic algebra (Springer, London, 2003).
[CR88]Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras (John Wiley & Sons, New York, NY, 1988), reprint of the 1962 original, a Wiley Interscience publication.
[Den11]Denton, T., A combinatorial formula for orthogonal idempotents in the 0-hecke algebra of the symmetric group, Electron. J. Combin. 18 (2011), Research Paper 28, 20 pp.
[DHST11]Denton, T., Hivert, F., Schilling, A. and Thiéry, N., On the representation theory of finite 𝒥-trivial monoids, Sém. Lothar. Combin. 64 (2011), Art. B64d, 34 pp..
[DS09]Diaconis, P. and Steinberg, B., Colored shuffles and random walks on semigroups (2009), to appear.
[DHT02]Duchamp, G., Hivert, F. and Thibon, J.-Y., Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), 671717.
[Eil76]Eilenberg, S., Automata, languages, and machines. Vol. B (Academic Press, New York, NY, 1976), with two chapters (‘Depth decomposition theorem’ and ‘Complexity of semigroups and morphisms’) by Bret Tilson, Pure and Applied Mathematics, vol. 59.
[EZ76]Elkins, B. and Zilber, J. A., Categories of actions and Morita equivalence, Rocky Mountain J. Math. 6 (1976), 199225.
[Fay05]Fayers, M., 0-Hecke algebras of finite Coxeter groups, J. Pure Appl. Algebra 199 (2005), 2741.
[FGG99]Fountain, J., Gomes, G. M. S. and Gould, V., Enlargements, semiabundancy and unipotent monoids, Comm. Algebra 27 (1999), 595614.
[GR97]Gabriel, P. and Roiter, A. V., Representations of finite-dimensional algebras (Springer, Berlin, 1997), translated from the Russian, with a chapter by B. Keller, reprint of the 1992 English translation.
[GM11]Ganyushkin, O. and Mazorchuk, V., On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra 10 (2011), 174191.
[GMS09]Ganyushkin, O., Mazorchuk, V. and Steinberg, B., On the irreducible representations of a finite semigroup, Proc. Amer. Math. Soc. 137 (2009), 35853592.
[GHKLMS03]Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S., Continuous lattices and domains, Encyclopedia of Mathematics and its Applications, vol. 93 (Cambridge University Press, Cambridge, 2003).
[Gre51]Green, J. A., On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163172.
[HMS74]Hofmann, K. H., Mislove, M. and Stralka, A., The Pontryagin duality of compact O-dimensional semilattices and its applications, Lecture Notes in Mathematics, vol. 396 (Springer, Berlin, 1974).
[Hsi09]Hsiao, S. K., A semigroup approach to wreath-product extensions of Solomon’s descent algebras, Electron. J. Combin. 16 (2009), 9, Research Paper 21.
[JK81]James, G. and Kerber, A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16 (Addison-Wesley, Reading, MA, 1981), with a foreword by P. M. Cohn, with an introduction by Gilbert de B. Robinson.
[Joh86]Johnstone, P. T., Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3 (Cambridge University Press, Cambridge, 1986), reprint of the 1982 edition.
[KPT05]Koucký, M., Pudlák, P. and Thérien, D., Bounded-depth circuits: separating wires from gates [extended abstract], in STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (ACM, New York, NY, 2005), 257265.
[KR68]Krohn, K. and Rhodes, J., Complexity of finite semigroups, Ann. of Math. (2) 88 (1968), 128160.
[KRT68]Krohn, K., Rhodes, J. and Tilson, B., Algebraic theory of machines, languages, and semigroups, ed. Arbib, M. A. (Academic Press, New York, NY, 1968), ch. 1, 5–9 with a major contribution by Kenneth Krohn and John L. Rhodes.
[KM08]Kudryavtseva, G. and Mazorchuk, V., Schur-Weyl dualities for symmetric inverse semigroups, J. Pure Appl. Algebra 212 (2008), 19871995.
[Law98]Lawson, M. V., Inverse semigroups (World Scientific, River Edge, NJ, 1998).
[Lot97]Lothaire, M., Combinatorics on words, Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1997), with a foreword by Roger Lyndon, with a preface by Dominique Perrin, corrected reprint of the 1983 original, with a new preface by Perrin.
[Lüc89]Lück, W., Transformation groups and algebraic K-theory, Lecture Notes in Mathematics, vol. 1408 (Springer, Berlin, 1989), Mathematica Gottingensis.
[Mac98]Mac Lane, S., Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, second edition (Springer, New York, NY, 1998).
[MM94]Mac Lane, S. and Moerdijk, I., Sheaves in geometry and logic, Universitext (Springer, New York, NY, 1994), corrected reprint of the 1992 edition.
[MR10]Malandro, M. and Rockmore, D., Fast Fourier transforms for the rook monoid, Trans. Amer. Math. Soc. 362 (2010), 10091045.
[Mal10]Malandro, M. E., Fast Fourier transforms for finite inverse semigroups, J. Algebra 324 (2010), 282312.
[MR95]Mantaci, R. and Reutenauer, C., A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra 23 (1995), 2756.
[MSS11]Margolis, S. W., Saliola, F. V. and Steinberg, B., A topological approach to the global dimension of left regular band algebras, (2011), to appear.
[MS11]Margolis, S. and Steinberg, B., The quiver of an algebra associated to the Mantaci-Reutenauer descent algebra and the homology of regular semigroups, Algebr. Represent. Theory 14 (2011), 131159.
[McA71]McAlister, D. B., Representations of semigroups by linear transformations. I, II, Semigroup Forum 2 (1971), 189263 ; 2 (1971), 283–320.
[McA72]McAlister, D. B., Characters of finite semigroups, J. Algebra 22 (1972), 183200.
[Mit72]Mitchell, B., Rings with several objects, Adv. Math. 8 (1972), 1161.
[Nic71]Nico, W. R., Homological dimension in semigroup algebras, J. Algebra 18 (1971), 404413.
[Nic72]Nico, W. R., An improved upper bound for global dimension of semigroup algebras, Proc. Amer. Math. Soc. 35 (1972), 3436.
[Nor79]Norton, P. N., 0-Hecke algebras, J. Aust. Math. Soc. Ser. A 27 (1979), 337357.
[OP91]Okniński, J. and Putcha, M. S., Complex representations of matrix semigroups, Trans. Amer. Math. Soc. 323 (1991), 563581.
[Pfe09]Pfeiffer, G., A quiver presentation for Solomon’s descent algebra, Adv. Math. 220 (2009), 14281465.
[Pin86]Pin, J.-E., Varieties of formal languages, foundations of computer science (Plenum, New York, NY, 1986), with a preface by M.-P. Schützenberger, translated from the French by A. Howie.
[Put73]Putcha, M. S., Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), 1234.
[Put88]Putcha, M. S., Linear algebraic monoids, London Mathematical Society Lecture Note Series, vol. 133 (Cambridge University Press, Cambridge, 1988).
[Put89]Putcha, M. S., Monoids on groups with BN-pairs, J. Algebra 120 (1989), 139169.
[Put91]Putcha, M. S., Monoids of Lie type and group representations, in Monoids and semigroups with applications (Berkeley, CA, 1989) (World Scientific, River Edge, NJ, 1991), 288305.
[Put94]Putcha, M. S., Classification of monoids of Lie type, J. Algebra 163 (1994), 636662.
[Put95]Putcha, M. S., Monoids of Lie type, in Semigroups, formal languages and groups (York, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 466 (Kluwer, Dordrecht, 1995), 353367.
[Put96]Putcha, M. S., Complex representations of finite monoids, Proc. Lond. Math. Soc. (3) 73 (1996), 623641.
[Put98]Putcha, M. S., Complex representations of finite monoids. II. Highest weight categories and quivers, J. Algebra 205 (1998), 5376.
[Put00]Putcha, M. S., Semigroups and weights for group representations, Proc. Amer. Math. Soc. 128 (2000), 28352842.
[PR93]Putcha, M. S. and Renner, L. E., The canonical compactification of a finite group of Lie type, Trans. Amer. Math. Soc. 337 (1993), 305319.
[Ren05]Renner, L. E., Linear algebraic monoids, Encyclopaedia of Mathematical Sciences, vol. 134 (Springer, Berlin, 2005), Invariant Theory and Algebraic Transformation Groups, V.
[Rho69]Rhodes, J., Characters and complexity of finite semigroups, J. Combin. Theory 6 (1969), 6785.
[RS09]Rhodes, J. and Steinberg, B., The q-theory of finite semigroups, Springer Monographs in Mathematics (Springer, New York, NY, 2009).
[RZ91]Rhodes, J. and Zalcstein, Y., Elementary representation and character theory of finite semigroups and its application, in Monoids and semigroups with applications (Berkeley, CA, 1989) (World Scientific, River Edge, NJ, 1991), 334367.
[RS90]Richardson, R. W. and Springer, T. A., The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), 389436.
[Sal07]Saliola, F. V., The quiver of the semigroup algebra of a left regular band, Internat. J. Algebra Comput. 17 (2007), 15931610.
[Sal08]Saliola, F. V., On the quiver of the descent algebra, J. Algebra 320 (2008), 38663894.
[Sal09]Saliola, F. V., The face semigroup algebra of a hyperplane arrangement, Canad. J. Math. 61 (2009), 904929.
[Sch06]Schocker, M., The module structure of the Solomon-Tits algebra of the symmetric group, J. Algebra 301 (2006), 554586.
[Sch08]Schocker, M., Radical of weakly ordered semigroup algebras, J. Algebraic Combin. 28 (2008), 231234, with a foreword by Nantel Bergeron.
[Sch76/77]Schützenberger, M. P., Sur le produit de concaténation non ambigu, Semigroup Forum 13 (1976/77), 4775.
[Sim75]Simon, I., Piecewise testable events, in Automata theory and formal languages (Second GI Conference, Kaiserslautern, 1975), Lecture Notes in Computer Science, vol. 33 (Springer, Berlin, 1975), 214222.
[Sol76]Solomon, L., A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), 255264.
[Sol02]Solomon, L., Representations of the rook monoid, J. Algebra 256 (2002), 309342.
[Sta97]Stanley, R. P., Enumerative combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49 (Cambridge University Press, Cambridge, 1997), with a foreword by Gian-Carlo Rota, corrected reprint of the 1986 original.
[Sta99]Stanley, R. P., Enumerative combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999), with a foreword by Gian-Carlo Rota, Appendix 1 by Sergey Fomin.
[Ste06]Steinberg, B., Möbius functions and semigroup representation theory, J. Combin. Theory Ser. A 113 (2006), 866881.
[Ste08]Steinberg, B., Möbius functions and semigroup representation theory. II. Character formulas and multiplicities, Adv. Math. 217 (2008), 15211557.
[Ste10]Steinberg, B., A theory of transformation monoids: combinatorics and representation theory, Electron. J. Combin. 17 (2010), Research Paper 164, 56 pp.
[Sti73]Stiffler, J. P., Extension of the fundamental theorem of finite semigroups, Adv. in Math. 11 (1973), 159209.
[ST88]Straubing, H. and Thérien, D., Partially ordered finite monoids and a theorem of I. Simon, J. Algebra 119 (1988), 393399.
[Tit74]Tits, J., Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, vol. 386 (Springer, Berlin, 1974).
[Tit76]Tits, J., Two properties of Coxeter complexes, J. Algebra 41 (1976), 265268, appendix to [L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 4 (1976), 255–264].
[Web07]Webb, P., An introduction to the representations and cohomology of categories, in Group representation theory (EPFL Press, Lausanne, 2007), 149173.
[Web08]Webb, P., Standard stratifications of EI categories and Alperin’s weight conjecture, J. Algebra 320 (2008), 40734091.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed