Skip to main content Accessibility help

Picard groups of higher real $K$ -theory spectra at height $p-1$

  • Drew Heard (a1), Akhil Mathew (a2) and Vesna Stojanoska (a3)


Using the descent spectral sequence for a Galois extension of ring spectra, we compute the Picard group of the higher real $K$ -theory spectra of Hopkins and Miller at height $n=p-1$ , for $p$ an odd prime. More generally, we determine the Picard groups of the homotopy fixed points spectra $E_{n}^{hG}$ , where $E_{n}$ is Lubin–Tate $E$ -theory at the prime $p$ and height $n=p-1$ , and $G$ is any finite subgroup of the extended Morava stabilizer group. We find that these Picard groups are always cyclic, generated by the suspension.



Hide All
[AF78] Almkvist, G. and Fossum, R., Decomposition of exterior and symmetric powers of indecomposable Z/p Z -modules in characteristic p and relations to invariants , in Séminaire d’Algèbre Paul Dubreil, 30ème année (Paris 1976–1977), Lecture Notes in Mathematics, vol. 641 (Springer, Berlin, 1978), 1111; MR 499459 (81b:14024).
[ABGHR14] Ando, M., Blumberg, A. J., Gepner, D., Hopkins, M. J. and Rezk, C., Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory , J. Topol. 7 (2014), 10771117; MR 3286898.
[BR05] Baker, A. and Richter, B., Invertible modules for commutative S-algebras with residue fields , Manuscripta Math. 118 (2005), 99119; MR 2171294 (2006f:55009).
[BR07] Baker, A. and Richter, B., Realizability of algebraic Galois extensions by strictly commutative ring spectra , Trans. Amer. Math. Soc. 359 (2007), 827857 (electronic); MR 2255198 (2007m:55007).
[Bea15] Beaudry, A., The algebraic duality resolution at p = 2 , Algebr. Geom. Topol. 15 (2015), 36533705; MR 3450774.
[Beh12] Behrens, M., The homotopy groups of S E (2) at p⩾5 revisited , Adv. Math. 230 (2012), 458492; MR 2914955.
[Bob14] Bobkova, I., Resolutions in the $K(2)$ -local category at the prime 2, PhD thesis, Northwestern University (ProQuest LLC, Ann Arbor, MI 2014); MR 3251316.
[Buj12] Bujard, C., Finite subgroups of extended Morava stabilizer groups, Preprint (2012), arXiv:1206.1951.
[CLM76] Cohen, F. R., Lada, T. J. and May, J. P., The homology of iterated loop spaces, Lecture Notes in Mathematics, vol. 533 (Springer, New York, 1976); MR 0436146 (55 #9096).
[DH95] Devinatz, E. S. and Hopkins, M. J., The action of the Morava stabilizer group on the Lubin–Tate moduli space of lifts , Amer. J. Math. 117 (1995), 669710; MR 1333942 (97a:55007).
[DH04] Devinatz, E. S. and Hopkins, M. J., Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups , Topology 43 (2004), 147; MR 2030586 (2004i:55012).
[Frö68] Fröhlich, A., Formal groups, Lecture Notes in Mathematics, vol. 74 (Springer, Berlin, 1968); MR 0242837 (39 #4164).
[GL16] Gepner, D. and Lawson, T., Brauer groups and Galois cohomology of commutative ring spectra, Preprint (2016), arXiv:1607.01118.
[GHM04] Goerss, P., Henn, H.-W. and Mahowald, M., The homotopy of L 2 V (1) for the prime 3 , in Categorical decomposition techniques in algebraic topology (Isle of Skye 2001), Progress in Mathematics, vol. 215 (Birkhäuser, Basel, 2004), 125151; MR 2039763 (2004k:55010).
[GHMR05] Goerss, P., Henn, H.-W., Mahowald, M. and Rezk, C., A resolution of the K (2)-local sphere at the prime 3 , Ann. of Math. (2) 162 (2005), 777822; MR 2183282 (2006j:55016).
[GHMR15] Goerss, P., Henn, H.-W., Mahowald, M. and Rezk, C., On Hopkins’ Picard groups for the prime 3 and chromatic level 2 , J. Topol. 8 (2015), 267294; MR 3335255.
[GH04] Goerss, P. G. and Hopkins, M. J., Moduli spaces of commutative ring spectra , in Structured ring spectra, London Mathematical Society Lecture Note Series, vol. 315 (Cambridge University Press, Cambridge, 2004), 151200; MR 2125040 (2006b:55010).
[GMS98] Gorbounov, V., Mahowald, M. and Symonds, P., Infinite subgroups of the Morava stabilizer groups , Topology 37 (1998), 13711379; MR 1632952 (99m:16032).
[Hea15] Heard, D., The Tate spectrum of the higher real $K$ -theories at height $n=p-1$ , Preprint (2015), arXiv:1501.07759.
[Hen07] Henn, H.-W., On finite resolutions of K (n)-local spheres , in Elliptic cohomology, London Mathematical Society Lecture Note Series, vol. 342 (Cambridge University Press, Cambridge, 2007), 122169; MR 2330511 (2009e:55014).
[Hew95] Hewett, T., Finite subgroups of division algebras over local fields , J. Algebra 173 (1995), 518548; MR 1327867 (96b:16012).
[Hil06] Hill, M., Computational methods for higher real $K$ -theory with applications to TMF, PhD thesis, Massachusetts Institute of Technology (2006).
[HM15] Hill, M. and Meier, L., The $C_{2}$ -spectrum $Tmf_{1}(3)$ and its invertible modules, Algebr. Geom. Topol., to appear, arXiv:1507.08115.
[HMS94] Hopkins, M. J., Mahowald, M. and Sadofsky, H., Constructions of elements in Picard groups , in Topology and representation theory (Evanston, IL 1992), Contemporary Mathematic, vol. 158 (American Mathematical Society, Providence, RI, 1994), 89126; MR 1263713 (95a:55020).
[Kar10] Karamanov, N., On Hopkins’ Picard group Pic2 at the prime 3 , Algebr. Geom. Topol. 10 (2010), 275292; MR 2602836 (2011c:55013).
[Kra66] Kraines, D., Massey higher products , Trans. Amer. Math. Soc. 124 (1966), 431449; MR 0202136 (34 #2010).
[Lad13] Lader, O., Une résolution projective pour le second groupe de Morava pour $p\geqslant 5$ et applications, PhD thesis, Institut de Recherche Mathmatiques Avance (July 2013).
[Lur11] Lurie, J., Derived algebraic geometry XI: descent theorems, available at∼lurie/papers/DAG-XI.pdf.
[Mat15] Mathew, A., A thick subcategory theorem for modules over certain ring spectra , Geom. Topol. 19 (2015), 23592392; MR 3375530.
[Mat16] Mathew, A., The Galois group of a stable homotopy theory , Adv. Math. 291 (2016), 403541; MR 3459022.
[MM15] Mathew, A. and Meier, L., Affineness and chromatic homotopy theory , J. Topol. 8 (2015), 476528; MR 3356769.
[MNN15] Mathew, A., Naumann, N. and Noel, J., Derived induction and restriction theory, Preprint (2015), arXiv:1507.06867.
[MS16] Mathew, A. and Stojanoska, V., The Picard group of topological modular forms via descent theory , Geom. Topol. 20 (2016), 31333217.
[Mum66] Mumford, D., Lectures on curves on an algebraic surface, With a section by G. M. Bergman, Annals of Mathematics Studies, vol. 59 (Princeton University Press, Princeton, NJ, 1966); MR 0209285 (35 #187).
[Nav99] Nave, L. S., The cohomology of finite subgroups of Morava stabilizer groups and Smith–Toda complexes, PhD thesis, University of Washington (ProQuest LLC, Ann Arbor, MI 1999); MR 2699376.
[Nav10] Nave, L. S., The Smith–Toda complex V ((p + 1)/2) does not exist , Ann. of Math. (2) 171 (2010), 491509; MR 2630045 (2011m:55012).
[Pri73] Priddy, S., Mod-p right derived functor algebras of the symmetric algebra functor , J. Pure Appl. Algebra 3 (1973), 337356; MR 0342592 (49 #7338).
[Rav78] Ravenel, D. C., The non-existence of odd primary Arf invariant elements in stable homotopy , Math. Proc. Cambridge Philos. Soc. 83 (1978), 429443; MR 0474291 (57 #13938).
[Rez98] Rezk, C., Notes on the Hopkins–Miller theorem , in Homotopy theory via algebraic geometry and group representations (Evanston, IL 1997), Contemporary Mathematic, vol. 220 (American Mathematical Society, Providence, RI, 1998), 313366; MR 1642902 (2000i:55023).
[Rog08] Rognes, J., Galois extensions of structured ring spectra. Stably dualizable groups , Mem. Amer. Math. Soc. 192 (2008), viii + 137; MR 2387923 (2009c:55007).
[Ser79] Serre, J.-P., Local fields, Graduate Texts in Mathematics, vol. 67 (Springer, New York, 1979). Translated from the French by Marvin Jay Greenberg; MR 554237 (82e:12016).
[SGA1] Grothendieck, A. and Raynaud, M., Revêtements étales et groupe fondamental (SGA 1) , in Séminaire de géométrie algébrique du Bois Marie 1960–61, Documents Mathématiques (Paris), vol. 3 (Société Mathématique de France, Paris, 2003), updated and annotated reprint of the 1971 original; MR 2017446 (2004g:14017).
[Tod67] Toda, H., An important relation in homotopy groups of spheres , Proc. Japan Acad. 43 (1967), 839842; MR 0230310 (37 #5872).
[Tod68] Toda, H., Extended pth powers of complexes and applications to homotopy theory , Proc. Japan Acad. 44 (1968), 198203; MR 0230311 (37 #5873).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Picard groups of higher real $K$ -theory spectra at height $p-1$

  • Drew Heard (a1), Akhil Mathew (a2) and Vesna Stojanoska (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed