Skip to main content Accessibility help
×
Home

Partition Algebras are Cellular

  • CHANGCHANG XI (a1)

Abstract

The partition algebra P(q) is a generalization both of the Brauer algebra and the Temperley–Lieb algebra for q-state n-site Potts models, underpining their transfer matrix formulation on the arbitrary transverse lattices. We prove that for arbitrary field k and any element q∈ k the partition algebra P(q) is always cellular in the sense of Graham and Lehrer. Thus the representation theory of P(q) can be determined by applying the developed general representation theory on cellular algebras and symmetric groups. Our result also provides an explicit structure of P(q) for arbitrary field and implies the well-known fact that the Brauer algebra D(q) and the Temperley–Lieb algebra TL(q) are cellular.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Partition Algebras are Cellular
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Partition Algebras are Cellular
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Partition Algebras are Cellular
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Partition Algebras are Cellular

  • CHANGCHANG XI (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.