Skip to main content Accessibility help
×
Home

On the relationship between depth and cohomological dimension

  • Hailong Dao (a1) and Shunsuke Takagi (a2)

Abstract

Let $(S,\mathfrak{m})$ be an $n$ -dimensional regular local ring essentially of finite type over a field and let $\mathfrak{a}$ be an ideal of $S$ . We prove that if $\text{depth}\,S/\mathfrak{a}\geqslant 3$ , then the cohomological dimension $\text{cd}(S,\mathfrak{a})$ of $\mathfrak{a}$ is less than or equal to $n-3$ . This settles a conjecture of Varbaro for such an $S$ . We also show, under the assumption that $S$ has an algebraically closed residue field of characteristic zero, that if $\text{depth}\,S/\mathfrak{a}\geqslant 4$ , then $\text{cd}(S,\mathfrak{a})\leqslant n-4$ if and only if the local Picard group of the completion $\widehat{S/\mathfrak{a}}$ is torsion. We give a number of applications, including a vanishing result on Lyubeznik’s numbers, and sharp bounds on the cohomological dimension of ideals whose quotients satisfy good depth conditions such as Serre’s conditions $(S_{i})$ .

Copyright

References

Hide All
[Art69]Artin, M., Algebraic approximation of structures over complete local rings, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 2358.
[BS76]Bănică, C. and Stănăşilă, O., Algebraic methods in the global theory of complex spaces (Editura Academiei, Bucharest and John Wiley & Sons, London–New York–Sydney, 1976).
[Bou78]Boutot, J.-F., Schéma de Picard local, Lecture Notes in Mathematics, vol. 632 (Springer, Berlin, 1978).
[BV88]Bruns, W. and Vetter, U., Determinantal rings, Lecture Notes in Mathematics, vol. 1327 (Springer, Berlin, 1988).
[DHS13]Dao, H., Huneke, C. and Schweig, J., Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebraic Combin. 38(1) (2013), 3755.
[Dim92]Dimca, A., Singularities and topology of hypersurfaces, Universitext (Springer, New York, 1992).
[Dut00]Dutta, S. P., A theorem on smoothness–Bass-Quillen, Chow groups and intersection multiplicity of Serre, Trans. Amer. Math. Soc. 352 (2000), 16351645.
[Fos73]Fossum, R. M., The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74 (Springer, 1973).
[GW78]Goto, S. and Watanabe, K., On graded rings I, J. Math. Soc. Japan 30 (1978), 179213.
[Har68]Hartshorne, R., Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403450.
[Har75]Hartshorne, R., On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 599.
[Har77]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, Heidelberg, Berlin, 1977).
[Har94]Hartshorne, R., Generalized divisors on Gorenstein schemes, K-Theory 8 (1994), 287339.
[Hun92]Huneke, C., Problems in local cohomology, in Free resolutions in commutative algebra and algebraic geometry (Sundance 90), Research Notes in Mathematics, vol. 2 (Jones and Barlett, Burlington, MA, 1992), 93108.
[HL90]Huneke, C. and Lyubeznik, G., On the vanishing of local cohomology modules, Invent. Math. 102 (1990), 7393.
[KLZ14]Katzman, M., Lyubeznik, G. and Zhang, W., An extension of a theorem of Hartshorne, Proc. Amer. Math. Soc., to appear, arXiv:1408.0858.
[Kol13]Kollár, J., Grothendieck–Lefschetz type theorems for the local Picard group, J. Ramanujan Math. Soc. 28A (2013), 267285.
[Kol14]Kollár, J., Maps between local Picard groups, Preprint (2014), arXiv:1407.5108.
[Lyu93]Lyubeznik, G., Finiteness properties of local cohomology modules, Invent. Math. 113 (1993), 4155.
[Lyu06]Lyubeznik, G., On the vanishing of local cohomology in characteristic p > 0, Compositio Math. 142 (2006), 207221.
[Lyu07]Lyubeznik, G., On some local cohomology modules, Adv. Math. 213 (2007), 621643.
[Ogu73]Ogus, A., Local cohomological dimension, Ann. of Math. (2) 98 (1973), 327365.
[PS73]Peskine, C. and Szpiro, L., Dimension projective finie et cohomologie locale, Publ. Math. Inst. Hautes Et́udes Sci. 42 (1973), 47119.
[Var13]Varbaro, M., Cohomological and projective dimensions, Compositio Math. 149 (2013), 12031210.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed