Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-18T21:51:20.391Z Has data issue: false hasContentIssue false

On the equivariant Tamagawa number conjecture in tame CM-extensions, II

Published online by Cambridge University Press:  04 May 2011

Andreas Nickel*
Affiliation:
Universität Regensburg, Fakultät für Mathematik, Universitätsstr. 31, 93053 Regensburg, Germany (email: andreas.nickel@mathematik.uni-regensburg.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real fields with Galois group 𝒢, where K is a global number field and 𝒢 is a p-adic Lie group of dimension one for an odd prime p. We attach to each finite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center of the group ring ℤG which coincides with the Sinnott–Kurihara ideal if G is abelian. We state a conjecture on the integrality of SKu (L/K) which follows from the equivariant Tamagawa number conjecture (ETNC) in many cases, and is a theorem for abelian G. Assuming the vanishing of the Iwasawa μ-invariant, we compute Fitting invariants of certain Iwasawa modules via the EIMC, and we show that this implies the minus part of the ETNC at p for an infinite class of (non-abelian) Galois CM-extensions of number fields which are at most tamely ramified above p, provided that (an appropriate p-part of) the integrality conjecture holds.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Bar77/78]Barsky, D., Fonctions zêta p-adique d’une classe de rayon des corps de nombres totalement réels, Groupe d’Etude d’Analyse Ultramétrique (1977/78), Exp. No. 16.Google Scholar
[Ble06]Bley, W., On the equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field, Doc. Math. 11 (2006), 73118.CrossRefGoogle Scholar
[Bur01]Burns, D., Equivariant Tamagawa numbers and Galois module theory I, Compositio Math. 129 (2001), 203237.CrossRefGoogle Scholar
[BF01]Burns, D. and Flach, M., Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501570.CrossRefGoogle Scholar
[BG03]Burns, D. and Greither, C., On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math. 153 (2003), 305359.CrossRefGoogle Scholar
[BJ11]Burns, D. and Johnston, H., A non-abelian Stickelberger theorem, Compositio Math. 147 (2011), 3555.CrossRefGoogle Scholar
[Cas79]Cassou-Noguès, P., Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math. 51 (1979), 2959.CrossRefGoogle Scholar
[Chi83]Chinburg, T., On the Galois structure of algebraic integers and S-units, Invent. Math. 74 (1983), 321349.CrossRefGoogle Scholar
[Chi85]Chinburg, T., Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), 351376.CrossRefGoogle Scholar
[CFKSV05]Coates, J., Fukaya, T., Kato, K., Sujatha, R. and Venjakob, O., The GL2 main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Et́udes Sci. 101 (2005), 163208.CrossRefGoogle Scholar
[CR87]Curtis, C. W. and Reiner, I., Methods of representation theory with applications to finite groups and orders, Vol. 2 (John Wiley, New York, 1987).Google Scholar
[DR80]Deligne, P. and Ribet, K., Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227286.CrossRefGoogle Scholar
[FW79]Ferrero, B. and Washington, L., The Iwasawa invariant μ p vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), 377395.CrossRefGoogle Scholar
[Fla02]Flach, M., The equivariant Tamagawa number conjecture: a survey, in Stark’s conjectures: recent work and new directions, Papers from the International Conference on Stark’s conjectures and related topics, Johns Hopkins University, Baltimore, 5–9 August 2002, Contemporary Mathematics, vol. 358 eds Burns, D., Popescu, C., Sands, J. and Solomon, D. (American Mathematical Society, Providence, RI, 2002), 79125, updated version available at http://www.math.caltech.edu/people/flach.html.Google Scholar
[Gre00]Greither, C., Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields, Math. Z. 233 (2000), 515534.CrossRefGoogle Scholar
[Gre04]Greither, C., Computing Fitting ideals of Iwasawa modules, Math. Z. 246 (2004), 733767.CrossRefGoogle Scholar
[Gre07]Greither, C., Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture, Compositio Math. 143 (2007), 13991426.CrossRefGoogle Scholar
[GRW99]Gruenberg, K. W., Ritter, J. and Weiss, A., A local approach to Chinburg’s root number conjecture, Proc. Lond. Math. Soc. (3) 79 (1999), 4780.CrossRefGoogle Scholar
[Kur03]Kurihara, M., Iwasawa theory and Fitting ideals, J. Reine Angew. Math. 561 (2003), 3986.Google Scholar
[NSW00]Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields (Springer, 2000).Google Scholar
[Nic]Nickel, A., On non-abelian Stark-type conjectures, Ann. Inst. Fourier (Grenoble), to appear, Preprint available at http://www.mathematik.uni-regensburg.de/Nickel/english.html.Google Scholar
[Nic08]Nickel, A., The lifted root number conjecture for small sets of places and an application to CM-extensions, Augsburger Schriften zur Mathematik, Physik und Informatik, vol. 12 (Logos, Berlin, 2008), Dissertation.Google Scholar
[Nic10a]Nickel, A., On the equivariant Tamagawa number conjecture in tame CM-extensions, Math. Z. (2010), to appear, doi:10.1007/s00209-009-0658-9.CrossRefGoogle Scholar
[Nic10b]Nickel, A., Non-commutative Fitting invariants and annihilation of class groups, J. Algebra 323 (2010), 27562778.CrossRefGoogle Scholar
[RW02]Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, Manuscripta Math. 109 (2002), 131146.CrossRefGoogle Scholar
[RW03]Ritter, J. and Weiss, A., Representing Ω(l∞) for real abelian fields, J. Algebra Appl. 2 (2003), 237276.CrossRefGoogle Scholar
[RW04]Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, II, Indag. Math. 15 (2004), 549572.CrossRefGoogle Scholar
[RW05]Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, IV, Homology Homotopy Appl. 7 (2005), 155171.CrossRefGoogle Scholar
[RW10]Ritter, J. and Weiss, A., On the ‘main conjecture’ of equivariant Iwasawa theory, Preprint, arXiv:1004.2578v2.Google Scholar
[Sin80]Sinnott, W., On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181234.CrossRefGoogle Scholar
[Swa68]Swan, R. G., Algebraic K-theory, Springer Lecture Notes, 76 (Springer, 1968).CrossRefGoogle Scholar
[Tat66]Tate, J., The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709719.CrossRefGoogle Scholar
[Tat84]Tate, J., Les conjectures de Stark sur les fonctions L d’Artin en s=0 (Birkhäuser, 1984).Google Scholar
[Was82]Washington, L. C., Introduction to cyclotomic fields (Springer, 1982).CrossRefGoogle Scholar
[Wil90a]Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493540.CrossRefGoogle Scholar
[Wil90b]Wiles, A., On a conjecture of Brumer, Ann. of Math. (2) 131 (1990), 555565.CrossRefGoogle Scholar