Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T00:05:25.827Z Has data issue: false hasContentIssue false

On the abelianization of derived categories and a negative solution to Rosický’s problem

Published online by Cambridge University Press:  06 November 2012

Silvana Bazzoni
Affiliation:
Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy (email: bazzoni@math.unipd.it)
Jan Šťovíček
Affiliation:
Department of Algebra, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 83, 186 75 Praha 8, Czech Republic (email: stovicek@karlin.mff.cuni.cz)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove for a large family of rings R that their λ-pure global dimension is greater than one for each infinite regular cardinal λ. This answers in the negative a problem posed by Rosický. The derived categories of such rings then do not satisfy, for any λ, the Adams λ-representability for morphisms. Equivalently, they are examples of well-generated triangulated categories whose λ-abelianization in the sense of Neeman is not a full functor for any λ. In particular, we show that given a compactly generated triangulated category, one may not be able to find a Rosický functor among the λ-abelianization functors.

Type
Research Article
Copyright
Copyright © The Author(s) 2012

References

[AR94]Adámek, J. and Rosický, J., Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189 (Cambridge University Press, Cambridge, 1994); MR 1294136(95j:18001).CrossRefGoogle Scholar
[Ada71]Adams, J. F., A variant of E. H. Brown’s representability theorem, Topology 10 (1971), 185198; MR 0283788(44#1018).Google Scholar
[AR68]Amdal, I. K. and Ringdal, F., Catégories unisérielles, C. R. Acad. Sci. Paris Sér. A–B 267 (1968), A247A249; MR 0235007(38#3319).Google Scholar
[AF92]Anderson, F. W. and Fuller, K. R., Rings and categories of modules, Graduate Texts in Mathematics, vol. 13, second edition (Springer, New York, 1992); MR 1245487(94i:16001).CrossRefGoogle Scholar
[ARO95]Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36 (Cambridge University Press, Cambridge, 1995); MR 1314422(96c:16015).CrossRefGoogle Scholar
[BBL82a]Baer, D., Brune, H. and Lenzing, H., A homological approach to representations of algebras. I. The wild case, J. Pure Appl. Algebra 24 (1982), 227233; MR 675010(84a:16038b).CrossRefGoogle Scholar
[BBL82b]Baer, D., Brune, H. and Lenzing, H., A homological approach to representations of algebras. II. Tame hereditary algebras, J. Pure Appl. Algebra 26 (1982), 141153; MR 675010(84a:16038b).CrossRefGoogle Scholar
[Bel00]Beligiannis, A., Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), 268361; MR 1754234(2001e:18012).CrossRefGoogle Scholar
[Bou71]Bourbaki, N., Éléments de mathématique. Topologie générale. Chapitres 1 à 4 (Hermann, Paris, 1971); MR 0358652(50#11111).Google Scholar
[BG12]Braun, G. and Göbel, R., Splitting kernels into small summands, Israel J. Math. 188 (2012), 221230.Google Scholar
[Bro62]Brown, E. H. Jr, Cohomology theories, Ann. of Math. (2) 75 (1962), 467484; MR 0138104(25#1551).CrossRefGoogle Scholar
[B{ü}h10]Bühler, T., Exact categories, Expo. Math. 28 (2010), 169; MR 2606234.CrossRefGoogle Scholar
[CK10]Chen, X.-W. and Krause, H., Introduction to coherent sheaves on weighted projective lines, Preprint (2010), arXiv:0911.4473v3.Google Scholar
[CKN01]Christensen, J. D., Keller, B. and Neeman, A., Failure of Brown representability in derived categories, Topology 40 (2001), 13391361; MR 1867248(2003i:16013).Google Scholar
[CF04]Colby, R. R. and Fuller, K. R., Equivalence and duality for module categories (with tilting and cotilting for rings), Cambridge Tracts in Mathematics, vol. 161 (Cambridge University Press, Cambridge, 2004); MR 2048277(2005d:16001).CrossRefGoogle Scholar
[CH68]Crawley, P. and Hales, A. W., The structure of torsion abelian groups given by presentations, Bull. Amer. Math. Soc. 74 (1968), 954956; MR 0232840(38#1163).CrossRefGoogle Scholar
[CH69]Crawley, P. and Hales, A. W., The structure of abelian p-groups given by certain presentations, J. Algebra 12 (1969), 1023; MR 0238947(39#307).Google Scholar
[Fuc73]Fuchs, L., Infinite abelian groups. Volume II, Pure and Applied Mathematics. vol. 36-II (Academic Press, New York, 1973); MR 0349869(50#2362).Google Scholar
[Gab62]Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323448; MR 0232821(38#1144).CrossRefGoogle Scholar
[Gab73]Gabriel, P., Indecomposable representations. II, in Symposia Mathematica, vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) (Academic Press, London, 1973), 81104; MR 0340377(49#5132).Google Scholar
[GU71]Gabriel, P. and Ulmer, F., Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, vol. 221 (Springer, Berlin, 1971); MR 0327863(48#6205).Google Scholar
[Hil67]Hill, P., On the classification of abelian groups, photocopied manuscript (1967).Google Scholar
[Hil69]Hill, P., A countability condition for primary groups presented by relations of length two, Bull. Amer. Math. Soc. 75 (1969), 780782; MR 0246959(40#228).Google Scholar
[HPS97]Hovey, M., Palmieri, J. H. and Strickland, N. P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), 1114; MR 1388895(98a:55017).Google Scholar
[JL89]Jensen, C. U. and Lenzing, H., Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, vol. 2 (Gordon and Breach Science Publishers, New York, 1989); MR 1057608(91m:03038).Google Scholar
[Kap66]Kaplansky, I., The homological dimension of a quotient field, Nagoya Math. J. 27 (1966), 139142; MR 0194454(33#2664).CrossRefGoogle Scholar
[Kel90]Keller, B., Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379417; MR 1052551(91h:18006).CrossRefGoogle Scholar
[Ker96]Kerner, O., Representations of wild quivers, in Representation theory of algebras and related topics (Mexico City, 1994), CMS Conference Proceedings, vol. 19 (American Mathematical Society, Providence, RI, 1996), 65107; MR 1388560(97e:16028).Google Scholar
[KL06]Klingler, L. and Levy, L. S., Representation type of commutative Noetherian rings (introduction), in Algebras, rings and their representations (World Scientific, Hackensack, NJ, 2006), 113151; MR 2234304(2007k:13036).CrossRefGoogle Scholar
[Kra10]Krause, H., Localization theory for triangulated categories, in Triangulated categories, London Mathematical Society Lecture Note Series, vol. 375 (Cambridge University Press, Cambridge, 2010), 161235; MR 2681709.Google Scholar
[Kul52]Kulikov, L. Y., Generalized primary groups. I, Trudy Moskov. Mat. Obšč. 1 (1952), 247326; MR 0049188(14,132d).Google Scholar
[Len83]Lenzing, H., Homological transfer from finitely presented to infinite modules, in Abelian group theory (Honolulu, Hawaii, 1983), Lecture Notes in Mathematics, vol. 1006 (Springer, Berlin, 1983), 734761; MR 722664(85f:16034).Google Scholar
[Len84]Lenzing, H., The pure-projective dimension of torsion-free divisible modules, Comm. Algebra 12 (1984), 649662; MR 735139(86h:16028).CrossRefGoogle Scholar
[Min68]Mines, R., A family of functors defined on generalized primary groups, Pacific J. Math. 26 (1968), 349360; MR 0238958(39#318).CrossRefGoogle Scholar
[Mur10]Muro, F., Representability of cohomology theories, Talk at the Joint Mathematical Conference CSASC 2010, Prague, available at http://www.personal.us.es/fmuro/praha.pdf.Google Scholar
[Nee97]Neeman, A., On a theorem of Brown and Adams, Topology 36 (1997), 619645; MR 1422428(98e:18007).Google Scholar
[Nee01]Neeman, A., Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton, NJ, 2001); MR 1812507(2001k:18010).CrossRefGoogle Scholar
[Nee09]Neeman, A., Brown representability follows from Rosický’s theorem, J. Topol. 2 (2009), 262276; MR 2529296(2010j:18022).Google Scholar
[Nun63]Nunke, R. J., Purity and subfunctors of the identity, in Topics in abelian groups (Proceedings of the Symposium at New Mexico State University, 1962) (Scott, Foresman and Co., Chicago, IL, 1963), 121171; MR 0169913(30#156).Google Scholar
[Nun67]Nunke, R. J., Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182212; MR 0218452(36#1538).CrossRefGoogle Scholar
[Oso73]Osofsky, B. L., Homological dimensions of modules, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, vol. 12 (American Mathematical Society, Providence, RI, 1973); MR 0447210(56#5525).Google Scholar
[RM11]Raventós Morera, O., Adams representability in triangulated categories, PhD thesis, University of Barcelona (2011).Google Scholar
[Ric89]Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc. (2) 39 (1989), 436456; MR 1002456(91b:18012).Google Scholar
[Rin84]Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099 (Springer, Berlin, 1984); MR 774589(87f:16027).Google Scholar
[Ros05]Rosický, J., Generalized Brown representability in homotopy categories, Theory Appl. Categ. 14 (2005), 451479 (revised version available at arXiv:math/0506168v3); MR 2211427(2007c:18009).Google Scholar
[Ros08]Rosický, J., Erratum: Generalized Brown representability in homotopy categories, Theory Appl. Categ. 20 (2008), 1824; MR 2369094(2008k:18016).Google Scholar
[Ros09]Rosický, J., Generalized purity, definability and Brown representability, Talk at the Some Trends in Algebra conference 2009, Prague, available at http://www.math.muni.cz/∼rosicky/papers/praha.pdf.Google Scholar
[Sal80]Salce, L., Struttura dei p-gruppi abeliani, Quad. dell’Unione Matematica Italiana, vol. 18 (Pitagora, Bologna, 1980).Google Scholar
[Trl12]Trlifaj, J., Brown representability test problems in locally Grothendieck categories, Appl. Categ. Structures 20 (2012), 97102.Google Scholar
[vR12]van Roosmalen, A.-C., Abelian hereditary fractionally Calabi–Yau categories, Int. Math. Res. Notices 2012 (2012), 27082750, doi:10.1093/imrn/rnr118.Google Scholar
[Wal74]Walker, E. A., The groups P β, in Symposia Mathematica, vol. XIII (Convegno di Gruppi Abeliani, INDAM, Rome, 1974) (Academic Press, London, 1974), 245255; MR 0364497(51#751).Google Scholar