Skip to main content Accessibility help
×
Home

On Greenberg’s L-invariant of the symmetric sixth power of an ordinary cusp form

  • Robert Harron (a1)

Abstract

We derive a formula for Greenberg’s L-invariant of Tate twists of the symmetric sixth power of an ordinary non-CM cuspidal newform of weight ≥4, under some technical assumptions. This requires a ‘sufficiently rich’ Galois deformation of the symmetric cube, which we obtain from the symmetric cube lift to GSp(4)/Q of Ramakrishnan–Shahidi and the Hida theory of this group developed by Tilouine–Urban. The L-invariant is expressed in terms of derivatives of Frobenius eigenvalues varying in the Hida family. Our result suggests that one could compute Greenberg’s L-invariant of all symmetric powers by using appropriate functorial transfers and Hida theory on higher rank groups.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On Greenberg’s L-invariant of the symmetric sixth power of an ordinary cusp form
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On Greenberg’s L-invariant of the symmetric sixth power of an ordinary cusp form
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On Greenberg’s L-invariant of the symmetric sixth power of an ordinary cusp form
      Available formats
      ×

Copyright

References

Hide All
[BGHT11]Barnet-Lamb, T., Geraghty, D., Harris, M. and Taylor, R., A family of Calabi–Yau varieties and potential automorphy, II, Publ. Res. Inst. Math. Sci. 47 (2011), 2998.
[Ben11]Benois, D., A generalization of Greenberg’s ℒ-invariant, Amer. J. Math. 133 (2011), 15731632.
[BK90]Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives, in The Grothendieck festschrift. Vol. I, Progress in Mathematics, vol. 86, eds Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Y. and Ribet, K. (Birkhäuser, 1990), 333400.
[Cit08]Citro, C., ℒ-invariants of adjoint square Galois representations coming from modular forms, Int. Math. Res. Not. 2008 (2008), doi:10.1093/imrn/rnn048.
[Del71]Deligne, P., Formes modulaires et représentations -adiques, Sémin. Bourbaki 1968/69 (1971), 139172.
[Del79]Deligne, P., Valeurs de fonctions L et périodes d’intégrales, in Automorphic forms, representations, and L-functions, Proceedings of the Symposium in Pure Mathematics, vol. 33, eds Borel, A. and Casselman, W. (American Mathematical Society, Providence, RI, 1979), 313346 part 2.
[FG78]Ferrero, B. and Greenberg, R., On the behavior of p-adic L-functions at s=0, Invent. Math. 50 (1978), 91102.
[Fla90]Flach, M., A generalisation of the Cassels–Tate pairing, J. Reine Angew. Math. 412 (1990), 113127.
[GV04]Ghate, E. and Vatsal, V., On the local behaviour of ordinary Λ-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), 21432162.
[Gre89]Greenberg, R., Iwasawa theory for p-adic representations, in Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17, eds Coates, J., Greenberg, R., Mazur, B. and Satake, I. (Academic Press, Boston, 1989), 97137. Papers in honor of Kenkichi Iwasawa on the occasion of his 70th birthday on 11 September 1987.
[Gre94]Greenberg, R., Trivial zeroes of p-adic L-functions, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, Contemporary Mathematics, vol. 165, eds Mazur, B. and Stevens, G. (American Mathematical Society, Providence, RI, 1994), 149174. Papers from the workshop held at Boston University, 12–16 August 1991.
[GS93]Greenberg, R. and Stevens, G., p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993), 407447.
[Har09]Harron, R., L-invariants of low symmetric powers of modular forms and Hida deformations, PhD thesis, Princeton University, 2009.
[Har11]Harron, R., The exceptional zero conjecture for symmetric powers of CM modular forms: the ordinary case, 2011, submitted.
[Hid02]Hida, H., Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1 (2002), 176.
[Hid04]Hida, H., Greenberg’s ℒ-invariants of adjoint square Galois representations, Int. Math. Res. Not. (2004), 31773189.
[Hid07]Hida, H., On a generalization of the conjecture of Mazur–Tate–Teitelbaum, Int. Math. Res. Not. 2007 (2007), doi:10.1093/imrn/rnm102.
[Kis04]Kisin, M., Geometric deformations of modular Galois representations, Invent. Math. 157 (2004), 275328.
[MTT86]Mazur, B., Tate, J. and Teitelbaum, J., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 148.
[Pil09]Pilloni, V., Sur la théorie de Hida pour le group GSp2g, Bull. Soc. Math. France, to appear, Preprint, 2009.
[RS08]Raghuram, A. and Shahidi, F., Functoriality and special values of L-functions, in Eisenstein series and applications, Progress in Mathematics, vol. 258, eds Gan, W. T., Kudla, S. and Tschinkel, Y. (Birkhäuser, 2008), 271293.
[RS07]Ramakrishnan, D. and Shahidi, F., Siegel modular forms of genus 2 attached to elliptic curves, Math. Res. Lett. 14 (2007), 315332.
[TU99]Tilouine, J. and Urban, É., Several-variable p-adic families of Siegel–Hilbert cusp eigensystems and their Galois representations, Ann. Sci. École Norm. Sup. 32 (1999), 499574.
[Urb01]Urban, É., Selmer groups and the Eisenstein–Klingen ideal, Duke Math. J. 106 (2001), 485525.
[Urb05]Urban, É., Sur les représentations p-adiques associées aux représentations cuspidales de GSp4/Q, in Formes automorphes (II): le cas du groupe GSp(4), Astérisque, vol. 302, eds Carayol, H., Harris, M., Tilouine, J. and Vignéras, M.-F. (SMF, 2005), 151176.
[Wei08]Weissauer, R., Existence of Whittaker models related to four dimensional symplectic Galois representations, in Modular forms on Schiermonnikoog, eds Edixhoven, B., van der Geer, G. and Moonen, B. (Cambridge University Press, Cambridge, 2008), 285310.
[Wes04]Weston, T., Geometric Euler systems for locally isotropic motives, Compositio Math. 140 (2004), 317332.
[Wil88]Wiles, A., On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), 529573.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

On Greenberg’s L-invariant of the symmetric sixth power of an ordinary cusp form

  • Robert Harron (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.