Skip to main content Accessibility help
×
Home

Nearby cycles of automorphic étale sheaves

  • Kai-Wen Lan (a1) and Benoît Stroh (a2) (a3)

Abstract

We show that the automorphic étale cohomology of a (possibly noncompact) PEL-type or Hodge-type Shimura variety in characteristic zero is canonically isomorphic to the cohomology of the associated nearby cycles over most of their mixed characteristics models constructed in the literature.

Copyright

References

Hide All
[Art69] Artin, M., Algebraic approximation of structures over complete local rings , Publ. Math. Inst. Hautes Études Sci. 36 (1969), 2358.
[AMRT10] Ash, A., Mumford, D., Rapoport, M. and Tai, Y., Smooth compactification of locally symmetric varieties, Cambridge Mathematical Library, second edition (Cambridge University Press, Cambridge, 2010).
[BBD82] Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers , inAnalyse et topologie sur les espaces singuliers I, CIRM, Luminy, 6–10 July 1981, Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982).
[Ber93] Berkovich, V., Étale cohomology for non-Archimedean analytic spaces , Publ. Math. Inst. Hautes Études Sci. 78 (1993), 5161.
[BM02] Breuil, C. and Mézard, A., Multiplicités modulaires et représentations de GL2(Z p ) et de Gal( Q p /Q p ) en = p , Duke Math. J. 115 (2002), 205310.
[Del80] Deligne, P., La conjecture de Weil. II , Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.
[Del82] Deligne, P., Hodge cycles on abelian varieties , in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900 (Springer, Berlin/Heidelberg, 1982), 9100; with notes by J. Milne.
[DP94] Deligne, P. and Pappas, G., Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant , Compos. Math. 90 (1994), 5979.
[EGA] Grothendieck, A. and Dieudonné, J., Eléments de géométrie algébrique, Publications Mathématiques. Institut de Hautes Études Scientifiques, vols. 4, 8, 11, 17, 20, 24, 28, 32 (Institut des Hautes Etudes Scientifiques, Paris, 1960, 1961, 1961, 1963, 1964, 1965, 1966, 1967).
[Eke90] Ekedahl, T., On the adic formalism , in The Grothendieck festschrift: A collection of articles written in honer of the 60th birthday of Alexander Grothendieck, Volume II eds Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Y. and Ribet, K. A. (Birkhäuser, Boston, 1990), 197218.
[FC90] Faltings, G. and Chai, C.-L., Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 22 (Springer, Berlin/Heidelberg, 1990).
[Far04] Fargues, L., Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales , in Variétés de Shimura, espaces de Rapoport–Zink, et correspondances de Langlands locales, Astérisque, vol. 291 (Société Mathématique de France, Paris, 2004), 1199.
[Fuj97] Fujiwara, K., Rigid geometry, Lefschetz–Verdier trace formula and Deligne’s conjecture , Invent. Math. 127 (1997), 489533.
[GT05] Genestier, A. and Tilouine, J., Systèmes de Taylor–Wiles pour GSp4 , in Formes automorphes (II): Le cas du groupe GSp(4), Astérisque, vol. 302, eds Tilouine, J., Carayol, H., Harris, M. and Vignéras, M.-F. (Société Mathématique de France, Paris, 2005), 177290.
[Hai05] Haines, T. J., Introduction to Shimura varieties with bad reductions of parahoric type , in Harmonic analysis, the trace formula, and Shimura varieties, Proc. Clay Mathematics Institute 2003 Summer School, The Fields Institute, Toronto, 2–27 June 2003, Clay Mathematics Proceedings, vol. 4, eds Arthur, J., Ellwood, D. and Kottwitz, R. (American Mathematical Society/Clay Mathematics Institute, Providence, RI/Cambridge, MA, 2005), 583658.
[Har89] Harris, M., Functorial properties of toroidal compactifications of locally symmetric varieties , Proc. Lond. Math. Soc. (3) 59 (1989), 122.
[HT01] Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, 2001).
[Hel10] Helm, D., Towards a geometric Jacquet–Langlands correspondence for unitary Shimura varieties , Duke Math. J. 155 (2010), 483518.
[Ill94] Illusie, L., Autour du théorème de monodromie locale , in Périodes p-adiques, Bures-sur-Yvette, 1988, Astérisque, vol. 223 (Société Mathématique de France, Paris, 1994), 957.
[IM11] Imai, N. and Mieda, Y., Compactly supported cohomology and nearby cycles of open Shimura varieties of PEL type, Preprint (2011), http://www.ms.u-tokyo.ac.jp/∼mieda/.
[KKMS73] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings I, Lecture Notes in Mathematics, vol. 339 (Springer, Berlin/Heidelberg, 1973).
[Kis10] Kisin, M., Integral models for Shimura varieties of abelian type , J. Amer. Math. Soc. 23 (2010), 9671012.
[Kot85] Kottwitz, R. E., Isocrystals with additional structure , Compos. Math. 56 (1985), 201220.
[Kot90] Kottwitz, R. E., Shimura varieties and 𝜆-adic representations , in Automorphic forms, Shimura varieties, and L-functions, Vol. I, University of Michigan, Ann Arbor, MI, 6–16 July 1988, Perspectives in Mathematics, vol. 10, eds Clozel, L. and Milne, J. S. (Academic Press, Boston, 1990), 161209.
[Kot92] Kottwitz, R. E., Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373444.
[Kot97] Kottwitz, R. E., Isocrystals with additional structure. II , Compos. Math. 109 (1997), 255339.
[Lan11] Lan, K.-W., Elevators for degenerations of PEL structures , Math. Res. Lett. 18 (2011), 889907.
[Lan12] Lan, K.-W., Toroidal compactifications of PEL-type Kuga families , Algebra Number Theory 6 (2012), 885966.
[Lan13] Lan, K.-W., Arithmetic compactification of PEL-type Shimura varieties, London Mathematical Society Monographs, vol. 36 (Princeton University Press, Princeton, 2013), errata and revision available online at the author’s website,http://www.math.umn.edu/∼kwlan/.
[Lan15a] Lan, K.-W., Boundary strata of connected components in positive characteristics , Algebra Number Theory 9 (2015), 20352054, appendix in [Xin Wan, Families of nearly ordinary Eisenstein series on unitary groups, Algebra Number Theory 9 (2015), 1955–2054].
[Lan15b] Lan, K.-W., Compactifications of splitting models of PEL-type Shimura varieties, Trans. Amer. Math. Soc., to appear. Preprint (2015), http://www.math.umn.edu/∼kwlan/.
[Lan16] Lan, K.-W., Compactifications of PEL-type Shimura varieties in ramified characteristics , Forum Math. Sigma 4 (2016), e1.
[Lan17a] Lan, K.-W., Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci (World Scientific, Singapore, 2017).
[Lan17b] Lan, K.-W., Integral models of toroidal compactifications with projective cone decompositions , Int. Math. Res. Not. IMRN 2017 (2017), 32373280.
[LS15] Lan, K.-W. and Stroh, B., Compactifications of subschemes of integral models of shimura varieties, Preprint (2015), http://www.math.umn.edu/∼kwlan/.
[LS12] Lan, K.-W. and Suh, J., Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties , Duke Math. J. 161 (2012), 11131170.
[Lev16] Levin, B., Local models for Weil-restricted groups , Compos. Math. 152 (2016), 25632601.
[Mad15] Madapusi Pera, K., Toroidal compactifications of integral models of Shimura varieties of Hodge type, Preprint (2015), http://math.uchicago.edu/∼keerthi/.
[Man05] Mantovan, E., On the cohomology of certain PEL-type Shimura varieties , Duke Math. J. 129 (2005), 573610.
[Man11] Mantovan, E., -adic étale cohomology of PEL type Shimura varieties with non-trivial coefficients, WIN–Woman in Numbers, Fields Institute Communications, vol. 60 (American Mathematical Society, Providence, RI, 2011), 61–83.
[PR03] Pappas, G. and Rapoport, M., Local models in the ramified case, I. The EL-case , J. Algebraic Geom. 12 (2003), 107145.
[PR05] Pappas, G. and Rapoport, M., Local models in the ramified case, II. Splitting models , Duke Math. J. 127 (2005), 193250.
[PZ13] Pappas, G. and Zhu, X., Local models of Shimura varieties and a conjecture of Kottwitz , Invent. Math. 194 (2013), 147254.
[Pin89] Pink, R., Arithmetic compactification of mixed Shimura varieties, PhD thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn (1989).
[PT02] Polo, P. and Tilouine, J., Bernstein–Gelfand–Gelfand complex and cohomology of nilpotent groups over ℤ(p) for representations with p-small weights , in Cohomology of Siegel varieties, Astérisque, vol. 280 (Société Mathématique de France, Paris, 2002), 97135.
[Rap78] Rapoport, M., Compactifications de l’espace de modules de Hilbert–Blumenthal , Compos. Math. 36 (1978), 255335.
[RR96] Rapoport, M. and Richartz, M., On the classification and specialization of F-isocrystals with additional structure , Compos. Math. 103 (1996), 153181.
[RZ96] Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, 1996).
[RX14] Reduzzi, D. A. and Xiao, L., Partial Hasse invariants on splitting models of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér. (4), to appear. Preprint (2014),http://www.math.uconn.edu/∼lxiao/.
[Sas14] Sasaki, S., Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, Preprint (2014),http://www.cantabgold.net/users/s.sasaki.03/.
[Sch13] Scholze, P., The Langlands–Kottwitz method and deformation spaces of p-divisible groups , J. Amer. Math. Soc. 26 (2013), 227259.
[SGA4] Artin, M., Grothendieck, A. and Verdier, J.-L. (eds), Théorie des topos et cohomologie étale des schémas (SGA 4), Tome 3, Lecture Notes in Mathematics, vol. 305 (Springer, Berlin/Heidelberg, 1973).
[SGA4½] Deligne, P. (ed.), Cohomologie étale (SGA 4½), Lecture Notes in Mathematics, vol. 569 (Springer, Berlin/Heidelberg, 1977).
[SGA7] Deligne, P. and Katz, N. (eds), Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Mathematics, vol. 340 (Springer, Berlin/Heidelberg, 1973).
[SS13] Scholze, P. and Shin, S. W., On the cohomology of compact unitary group Shimura varieties at ramified split places , J. Amer. Math. Soc. 26 (2013), 261294.
[Shi11] Shin, S. W., Galois representations arising from some compact Shimura varieties , Ann. of Math. (2) 173 (2011), 16451741.
[Ski09] Skinner, C., A note on the p-adic Galois representations attached to Hilbert modular forms , Doc. Math. 14 (2009), 241258.
[Spi99] Spivakovsky, M., A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms , J. Amer. Math. Soc. 12 (1999), 381444.
[Str10a] Stroh, B., Compactification de variétés de Siegel aux places de mauvaise réduction , Bull. Soc. Math. France 138 (2010), 259315.
[Str10b] Stroh, B., Compactification minimale et mauvaise réduction , Ann. Inst. Fourier (Grenoble) 60 (2010), 10351055.
[Str12] Stroh, B., Sur une conjecture de Kottwitz au bord , Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 143165.
[Tei95] Teissier, B., Résultats récents sur l’approximation des morphismes en algèbre commutative (d’après André, Artin, Popescu, et Spivakovsky) , in Séminaire Bourbaki, exposé n°  784, March 1994, Astérisque, vol. 227 (Société Mathématique de France, Paris, 1995), 259282.
[Var07] Varshavsky, Y., Lefschetz–Verdier trace formula and a generalization of a theorem of Fujiwara , Geom. Funct. Anal. 17 (2007), 271319.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Nearby cycles of automorphic étale sheaves

  • Kai-Wen Lan (a1) and Benoît Stroh (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed