Skip to main content Accessibility help
×
Home

Laurent phenomenon and simple modules of quiver Hecke algebras

  • Masaki Kashiwara (a1) (a2) and Myungho Kim (a3)

Abstract

In this paper we study consequences of the results of Kang et al. [Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349–426] on a monoidal categorification of the unipotent quantum coordinate ring $A_{q}(\mathfrak{n}(w))$ together with the Laurent phenomenon of cluster algebras. We show that if a simple module $S$ in the category ${\mathcal{C}}_{w}$ strongly commutes with all the cluster variables in a cluster $[\mathscr{C}]$ , then $[S]$ is a cluster monomial in $[\mathscr{C}]$ . If $S$ strongly commutes with cluster variables except for exactly one cluster variable $[M_{k}]$ , then $[S]$ is either a cluster monomial in $[\mathscr{C}]$ or a cluster monomial in $\unicode[STIX]{x1D707}_{k}([\mathscr{C}])$ . We give a new proof of the fact that the upper global basis is a common triangular basis (in the sense of Qin [Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. 166 (2017), 2337–2442]) of the localization $\widetilde{A}_{q}(\mathfrak{n}(w))$ of $A_{q}(\mathfrak{n}(w))$ at the frozen variables. A characterization on the commutativity of a simple module $S$ with cluster variables in a cluster $[\mathscr{C}]$ is given in terms of the denominator vector of $[S]$ with respect to the cluster  $[\mathscr{C}]$ .

Copyright

Footnotes

Hide All

This work was supported by Grant-in-Aid for Scientific Research (B) 22340005, Japan Society for the Promotion of Science. This work was supported by the National Research Foundation of Korea (NF) grant funded by the Korea government (MSIP) (No. NRF-2017R1C1B2007824).

Footnotes

References

Hide All
[BZ05] Berenstein, A. and Zelevinsky, A., Quantum cluster algebras , Adv. Math. 195 (2005), 405455.
[CL18] Cao, P. and Li, F., The enough $g$ -pairs property and denominator vectors of cluster algebras. Preprint (2018), arXiv:1803.05281v2.
[Cas18] Casbi, E., Dominance order and monoidal categorification of cluster algebras. Preprint (2018), arXiv:1810.00970.
[FG09] Fock, V. V. and Goncharov, A. B., Cluster ensembles, quantization and the dilogarithm , Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865930.
[FZ02] Fomin, S. and Zelevinsky, A., Cluster algebras I. Foundations , J. Amer. Math. Soc. 15 (2002), 497529.
[FZ07] Fomin, S. and Zelevinsky, A., Cluster algebras IV. Coefficients , Compos. Math. 143 (2007), 112164.
[GLS11] Geiß, C., Leclerc, B. and Schröer, J., Kac–Moody groups and cluster algebras , Adv. Math. 228 (2011), 329433.
[GLS13a] Geiß, C., Leclerc, B. and Schröer, J., Factorial cluster algebras , Doc. Math. 18 (2013), 249274.
[GLS13b] Geiß, C., Leclerc, B. and Schröer, J., Cluster structures on quantum coordinate rings , Selecta Math. (N.S.) 19 (2013), 337397.
[HL10] Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras , Duke Math. J. 154 (2010), 265341.
[KKK18] Kang, S.-J., Kashiwara, M. and Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras , Invent. Math. 211 (2018), 591685.
[KKKO15] Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Simplicity of heads and socles of tensor products , Compos. Math. 151 (2015), 377396.
[KKKO18] Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Monoidal categorification of cluster algebras , J. Amer. Math. Soc. 31 (2018), 349426.
[KKOP18] Kashiwara, M., Kim, M., Oh, S.-J. and Park, E., Monoidal categories associated with strata of flag manifolds , Adv. Math. 328 (2018), 9591009.
[KKOP19] Kashiwara, M., Kim, M., Oh, S.-J. and Park, E., Localizations for quiver Hecke algebras. Preprint (2019), arXiv:1901.09319v1.
[KL09] Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups I , Represent. Theory 13 (2009), 309347.
[Kim12] Kimura, Y., Quantum unipotent subgroup and dual canonical basis , Kyoto J. Math. 52 (2012), 277331.
[LS15] Lee, K. and Schiffler, R., Positivity for cluster algebras , Ann. of Math. (2) 182 (2015), 73125.
[Qin17] Qin, F., Triangular bases in quantum cluster algebras and monoidal categorification conjectures , Duke Math. 166 (2017), 23372442.
[Rou08] Rouquier, R., 2-Kac–Moody algebras. Preprint (2008), arXiv:0812.5023v1.
[Rou12] Rouquier, R., Quiver Hecke algebras and 2-Lie algebras , Algebra Colloq. 19 (2012), 359410.
[TW16] Tingley, P. and Webster, B., Mirković–Vilonen polytopes and Khovanov–Lauda–Rouquier algebras , Compos. Math. 152 (2016), 16481696.
[VV11] Varagnolo, M. and Vasserot, E., Canonical bases and KLR algebras , J. reine angew. Math. 659 (2011), 67100.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Laurent phenomenon and simple modules of quiver Hecke algebras

  • Masaki Kashiwara (a1) (a2) and Myungho Kim (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.