Skip to main content Accessibility help

Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups


Given a finite group $\text{G}$ and a field $K$ , the faithful dimension of $\text{G}$ over $K$ is defined to be the smallest integer $n$ such that $\text{G}$ embeds into $\operatorname{GL}_{n}(K)$ . We address the problem of determining the faithful dimension of a $p$ -group of the form $\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$ associated to $\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$ in the Lazard correspondence, where $\mathfrak{g}$ is a nilpotent $\mathbb{Z}$ -Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of $\mathscr{G}_{p}$ is a piecewise polynomial function of $p$ on a partition of primes into Frobenius sets. Furthermore, we prove that for $p$ sufficiently large, there exists a partition of $\mathbb{N}$ by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of $\mathscr{G}_{q}$ for $q:=p^{f}$ is equal to $fg(p^{f})$ for a polynomial $g(T)$ . We show that for many naturally arising $p$ -groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory.



Hide All

Throughout the preparation of this paper, M.B. was supported by Emmanuel Breuillard’s ERC grant ‘GeTeMo’, K.M.-K. was partially supported by the DFG grant DI506/14-1, and H.S. was supported by NSERC Discovery Grants RGPIN-2013-355464 and RGPIN-2018-04044.



Hide All
[AKOV13] Avni, N., Klopsch, B., Onn, U. and Voll, C., Representation zeta functions of compact p-adic analytic groups and arithmetic groups , Duke Math. J. 162 (2013), 111197.
[Ax67] Ax, J., Solving diophantine problems modulo every prime , Ann. of Math. (2) 85 (1967), 161183.
[BMS16] Bardestani, M., Mallahi-Karai, K. and Salmasian, H., Minimal dimension of faithful representations for p-groups , J. Group Theory 19 (2016), 589608.
[BF13] Berhuy, G. and Favi, G., Essential dimension: a functorial point of view (after A. Merkurjev) , Doc. Math. 8 (2013), 279330.
[Bol86] Bollobás, B., Combinatorics: set systems, hypergraphs, families of vectors and combinatorial probability (Cambridge University Press, Cambridge, 1986).
[BI04] Boston, N. and Isaacs, I. M., Class numbers of p-groups of a given order , J. Algebra 279 (2004), 810819.
[Bou98] Bourbaki, N., Lie groups and Lie algebras, Chapters 1–3 (Springer, Berlin, 1998); reprint of the 1989 English translation.
[BS08] Boyarchenko, M. and Sabitova, M., The orbit method for profinite groups and a p-adic analogue of Brown’s theorem , Israel J. Math. 165 (2008), 6791.
[BR97] Buhler, J. and Reichstein, Z., On the essential dimension of a finite group , Compositio Math. 106 (1997), 159179.
[Cox13] Cox, D. A., Primes of the form x 2 + ny 2 : Fermat, class field theory, and complex multiplication, Pure and Applied Mathematics, second edition (John Wiley, Hoboken, NJ, 2013).
[Fla89] Flath, D. E., Introduction to number theory (Wiley-Interscience, New York, NY, 1989).
[GS84] Grunewald, F. and Segal, D., Reflections on the classification of torsion-free nilpotent groups , in Group theory (Academic Press, London, 1984), 121158.
[Hor55] Horn, A., A characterization of unions of linearly independent sets , J. Lond. Math. Soc. (2) 30 (1955), 494496.
[How77a] Howe, R. E., Kirillov theory for compact p-adic groups , Pacific J. Math. 73 (1977), 365381.
[How77b] Howe, R. E., On representations of discrete, finitely generated, torsion-free, nilpotent groups , Pacific J. Math. 73 (1977), 281305.
[Jac85] Jacobson, N., Basic algebra. I, second edition (W. H. Freeman, New York, NY, 1985).
[Jai06] Jaikin-Zapirain, A., Zeta function of representations of compact p-adic analytic groups , J. Amer. Math. Soc. 19 (2006), 91118.
[KM08] Karpenko, N. A. and Merkurjev, A. S., Essential dimension of finite p-groups , Invent. Math. 172 (2008), 491508.
[Kaz77] Kazhdan, D., Proof of Springer’s hypothesis , Israel J. Math. 28 (1977), 272286.
[Khu88] Khukhro, E. I., p-automorphisms of finite p-groups, London Mathematical Society Lecture Note Series, vol. 246 (Cambridge University Press, Cambridge, 1998).
[Kir62] Kirillov, A. A., Unitary representations of nilpotent Lie groups , Uspekhi Mat. Nauk 17 (1962), 57110.
[Kus67] Kusaba, T., Remarque sur la distribution des nombres premiers , C. R. Acad. Sci. Paris Sér. A 265 (1967), 405407.
[Lag83] Lagarias, J. C., Sets of primes determined by systems of polynomial congruences , Illinois J. Math. 27 (1983), 224239.
[Lee16] Lee, S., A class of descendant p-groups of order p 9 and Higman’s PORC conjecture , J. Algebra 468 (2016), 440447.
[Mer17] Merkurjev, A. S., Essential dimension , Bull. Amer. Math. Soc. (N.S.) 54 (2017), 635661.
[MR10] Meyer, A. and Reichstein, Z., Some consequences of the Karpenko–Merkurjev theorem , Doc. Math. Extra vol., Andrei A. Suslin sixtieth birthday (2010), 445457.
[MVdP95] Myerson, G. and van der Poorten, A. J., Some problems concerning recurrence sequences , Amer. Math. Monthly 102 (1995), 698705.
[Neu99] Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322 (Springer, Berlin, 1999); translation of 1992 German original.
[O’BV15] O’Brien, E. A. and Voll, C., Enumerating classes and characters of p-groups , Trans. Amer. Math. Soc. 367 (2015), 77757796.
[Sch76] Schmidt, W. M., Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, vol. 536 (Springer, New York, NY, 1976).
[Ser03] Serre, J.-P., On a theorem of Jordan , Bull. Amer. Math. Soc. (N.S.) 40 (2003), 429440.
[Ser06] Serre, J.-P., Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, corrected fifth printing of second (1992) edition (Springer, Berlin, 2006).
[Ser12] Serre, J.-P., Lectures on N X(p), Chapman & Hall/CRC Research Notes in Mathematics, vol. 11 (CRC Press, Boca Raton, FL, 2012).
[SV14] Stasinski, A. and Voll, C., Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B , Amer. J. Math. 136 (2014), 501550.
[VdDri91] van den Dries, L., A remark on Ax’s theorem on solvability modulo primes , Math. Z. 208 (1991), 6570.
[Vol05] Voll, C., Functional equations for local normal zeta functions of nilpotent groups , Geom. Funct. Anal. 15 (2005), 274295.
[Vol04] Voll, C., Zeta functions of groups and enumeration in Bruhat–Tits buildings , Amer. J. Math. 126 (2004), 10051032.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed