[AKOV13]
Avni, N., Klopsch, B., Onn, U. and Voll, C.,
Representation zeta functions of compact p-adic analytic groups and arithmetic groups
, Duke Math. J.
162 (2013), 111–197.
[Ax67]
Ax, J.,
Solving diophantine problems modulo every prime
, Ann. of Math. (2)
85 (1967), 161–183.
[BMS16]
Bardestani, M., Mallahi-Karai, K. and Salmasian, H.,
Minimal dimension of faithful representations for p-groups
, J. Group Theory
19 (2016), 589–608.
[BF13]
Berhuy, G. and Favi, G.,
Essential dimension: a functorial point of view (after A. Merkurjev)
, Doc. Math.
8 (2013), 279–330.
[Bol86]
Bollobás, B., Combinatorics: set systems, hypergraphs, families of vectors and combinatorial probability (Cambridge University Press, Cambridge, 1986).
[BI04]
Boston, N. and Isaacs, I. M.,
Class numbers of p-groups of a given order
, J. Algebra
279 (2004), 810–819.
[Bou98]
Bourbaki, N., Lie groups and Lie algebras, Chapters 1–3 (Springer, Berlin, 1998); reprint of the 1989 English translation.
[BS08]
Boyarchenko, M. and Sabitova, M.,
The orbit method for profinite groups and a p-adic analogue of Brown’s theorem
, Israel J. Math.
165 (2008), 67–91.
[BR97]
Buhler, J. and Reichstein, Z.,
On the essential dimension of a finite group
, Compositio Math.
106 (1997), 159–179.
[Cox13]
Cox, D. A., Primes of the form x
^{2} + ny
^{2} : Fermat, class field theory, and complex multiplication, Pure and Applied Mathematics, second edition (John Wiley, Hoboken, NJ, 2013).
[Fla89]
Flath, D. E., Introduction to number theory (Wiley-Interscience, New York, NY, 1989).
[GS84]
Grunewald, F. and Segal, D.,
Reflections on the classification of torsion-free nilpotent groups
, in Group theory (Academic Press, London, 1984), 121–158.
[Hor55]
Horn, A.,
A characterization of unions of linearly independent sets
, J. Lond. Math. Soc. (2)
30 (1955), 494–496.
[How77a]
Howe, R. E.,
Kirillov theory for compact p-adic groups
, Pacific J. Math.
73 (1977), 365–381.
[How77b]
Howe, R. E.,
On representations of discrete, finitely generated, torsion-free, nilpotent groups
, Pacific J. Math.
73 (1977), 281–305.
[Jac85]
Jacobson, N., Basic algebra. I, second edition (W. H. Freeman, New York, NY, 1985).
[Jai06]
Jaikin-Zapirain, A.,
Zeta function of representations of compact p-adic analytic groups
, J. Amer. Math. Soc.
19 (2006), 91–118.
[KM08]
Karpenko, N. A. and Merkurjev, A. S.,
Essential dimension of finite p-groups
, Invent. Math.
172 (2008), 491–508.
[Kaz77]
Kazhdan, D.,
Proof of Springer’s hypothesis
, Israel J. Math.
28 (1977), 272–286.
[Khu88]
Khukhro, E. I.,
p-automorphisms of finite p-groups, London Mathematical Society Lecture Note Series, vol. 246 (Cambridge University Press, Cambridge, 1998).
[Kir62]
Kirillov, A. A.,
Unitary representations of nilpotent Lie groups
, Uspekhi Mat. Nauk
17 (1962), 57–110.
[Kus67]
Kusaba, T.,
Remarque sur la distribution des nombres premiers
, C. R. Acad. Sci. Paris Sér. A
265 (1967), 405–407.
[Lag83]
Lagarias, J. C.,
Sets of primes determined by systems of polynomial congruences
, Illinois J. Math.
27 (1983), 224–239.
[Lee16]
Lee, S.,
A class of descendant p-groups of order p
^{9} and Higman’s PORC conjecture
, J. Algebra
468 (2016), 440–447.
[Mer17]
Merkurjev, A. S.,
Essential dimension
, Bull. Amer. Math. Soc. (N.S.)
54 (2017), 635–661.
[MR10]
Meyer, A. and Reichstein, Z.,
Some consequences of the Karpenko–Merkurjev theorem
, Doc. Math.
Extra vol., Andrei A. Suslin sixtieth birthday (2010), 445–457.
[MVdP95]
Myerson, G. and van der Poorten, A. J.,
Some problems concerning recurrence sequences
, Amer. Math. Monthly
102 (1995), 698–705.
[Neu99]
Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322 (Springer, Berlin, 1999); translation of 1992 German original.
[O’BV15]
O’Brien, E. A. and Voll, C.,
Enumerating classes and characters of p-groups
, Trans. Amer. Math. Soc.
367 (2015), 7775–7796.
[Sch76]
Schmidt, W. M., Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, vol. 536 (Springer, New York, NY, 1976).
[Ser03]
Serre, J.-P.,
On a theorem of Jordan
, Bull. Amer. Math. Soc. (N.S.)
40 (2003), 429–440.
[Ser06]
Serre, J.-P., Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, corrected fifth printing of second (1992) edition (Springer, Berlin, 2006).
[Ser12]
Serre, J.-P., Lectures on N
_{X}(p), Chapman & Hall/CRC Research Notes in Mathematics, vol. 11 (CRC Press, Boca Raton, FL, 2012).
[SV14]
Stasinski, A. and Voll, C.,
Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B
, Amer. J. Math.
136 (2014), 501–550.
[VdDri91]
van den Dries, L.,
A remark on Ax’s theorem on solvability modulo primes
, Math. Z.
208 (1991), 65–70.
[Vol05]
Voll, C.,
Functional equations for local normal zeta functions of nilpotent groups
, Geom. Funct. Anal.
15 (2005), 274–295.
[Vol04]
Voll, C.,
Zeta functions of groups and enumeration in Bruhat–Tits buildings
, Amer. J. Math.
126 (2004), 1005–1032.