[Ais14]
Aistleitner, C.,
*A note on the Duffin–Schaeffer conjecture with slow divergence*
, Bull. Lond. Math. Soc.
46 (2014), 164–168.

[ALMT18]
Aistleitner, C., Lachmann, T., Munsch, M., Technau, N. and Zafeiropoulos, A., *The Duffin–Schaeffer conjecture with extra divergence*, Adv. Math., to appear. Preprint (2018), arXiv:1803.05703. [BW13]
Barroero, F. and Widmer, M.,
*Counting lattice points and o-minimal structures*
, Int. Math. Res. Not. IMRN
2014 (2013), 4932–4957.

[BHHV13]
Beresnevich, V., Harman, G., Haynes, A. and Velani, S.,
*The Duffin-Schaeffer conjecture with extra divergence II*
, Math. Z.
275 (2013), 127–133.

[BHV]
Beresnevich, V., Haynes, A. and Velani, S.,
*Sums of reciprocals of fractional parts and multiplicative Diophantine approximation*
, Mem. Amer. Math. Soc., to appear.

[BRV16]
Beresnevich, V., Ramírez, F. and Velani, S.,
*Metric Diophantine Approximation: some aspects of recent work*
, in Dynamics and analytic number theory, London Mathematical Society Lecture Note Series, vol. 437 (Cambridge University Press, Cambridge, 2016), 1–95.

[BV10]
Beresnevich, V. and Velani, S.,
*An inhomogeneous transference principle and Diophantine approximation*
, Proc. Lond. Math. Soc. (3)
101 (2010), 821–851.

[BV15]
Beresnevich, V. and Velani, S.,
*A note on three problems in metric Diophantine approximation*
, in Recent trends in ergodic theory and dynamical systems, Contemporary Mathematics, vol. 631 (American Mathematical Society, Providence, RI, 2015), 211–229.

[Bug09]
Bugeaud, Y.,
*Multiplicative Diophantine approximation*
, in Dynamical systems and Diophantine approximation, Séminaires et Congrès, vol. 19 (Société Mathématique de France, Paris, 2009), 105–125.

[BL05]
Bugeaud, Y. and Laurent, M.,
*On exponents of homogeneous and inhomogeneous Diophantine approximation*
, Mosc. Math. J.
5 (2005), 747–766.

[BL10]
Bugeaud, Y. and Laurent, M.,
*On transfer inequalities in Diophantine approximation, II*
, Math. Z.
265 (2010), 249–262.

[Cho18]
Chow, S.,
*Bohr sets and multiplicative diophantine approximation*
, Duke Math. J.
167 (2018), 1623–1642.

[CGGMS]
Chow, S., Ghosh, A., Guan, L., Marnat, A. and Simmons, D.,
*Diophantine transference inequalities: weighted, inhomogeneous, and intermediate exponents*
, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), to appear.

[Dav51]
Davenport, H.,
*On a principle of Lipschitz*
, J. Lond. Math. Soc.
1 (1951), 179–183.

[DS41]
Duffin, R. J. and Schaeffer, A. C.,
*Khintchine’s problem in metric Diophantine approximation*
, Duke Math. J.
8 (1941), 243–255.

[Eve]
Evertse, J.-H.,
*Mahler’s work on the geometry of numbers*
, in The legacy of Kurt Mahler: a mathematical selecta, Documenta Mathematica, eds Baake, M., Bugeaud, Y. and Coons, M.; to appear.

[Fre19]
Fregoli, R.,
*Sums of reciprocals of fractional parts*
, Int. J. Number Theory
15 (2019), 789–797.

[Gal61]
Gallagher, P. X.,
*Approximation by reduced fractions*
, J. Math. Soc. Japan
13 (1961), 342–345.

[Gal62]
Gallagher, P. X.,
*Metric simultaneous diophantine approximation*
, J. Lond. Math. Soc.
37 (1962), 387–390.

[GM19]
Ghosh, A. and Marnat, A.,
*On Diophantine transference principles*
, Math. Proc. Cambridge Phil. Soc.
166 (2019), 415–431.

[Har98]
Harman, G., Metric number theory, London Mathematical Society Monographs (N.S.), vol. 18 (Clarendon Press, Oxford, 1998).

[HPV12]
Haynes, A., Pollington, A. and Velani, S.,
*The Duffin-Schaeffer Conjecture with extra divergence*
, Math. Ann.
353 (2012), 259–273.

[HS18]
Hussain, M. and Simmons, D.,
*The Hausdorff measure version of Gallagher’s theorem — closing the gap and beyond*
, J. Number Theory
186 (2018), 211–225.

[Khi26]
Khintchine, A. Ya.,
*Über eine Klasse linearer diophantischer Approximationen*
, Rend. Circ. Mat. Palermo
50 (1926), 170–195.

[LV15]
Lê, T.-H. and Vaaler, J.,
*Sums of products of fractional parts*
, Proc. Lond. Math. Soc. (3)
111 (2015), 561–590.

[Ram17a]
Ramírez, F.,
*Counterexamples, covering systems, and zero-one laws for inhomogeneous approximation*
, Int. J. Number Theory
13 (2017), 633–654.

[Ram17b]
Ramírez, F., *Khintchine’s theorem with random fractions*, Mathematika, to appear. Preprint (2017), arXiv:1708.02874. [Sie89]
Siegel, C. L., Lectures on the geometry of numbers (Springer, Berlin, 1989).

[Ste04]
Steele, J. M., The Cauchy–Schwarz master class: an introduction to the art of mathematical inequalities (Cambridge University Press, Cambridge, 2004).

[TV06]
Tao, T. and Vu, V., Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105 (Cambridge University Press, Cambridge, 2006).

[TV08]
Tao, T. and Vu, V.,
*John-type theorems for generalized arithmetic progressions and iterated sumsets*
, Adv. Math.
219 (2008), 428–449.

[Thu93]
Thunder, J. L.,
*The number of solutions of bounded height to a system of linear equations*
, J. Number Theory
43 (1993), 228–250.

[Yu]
Yu, H.,
*A Fourier analytic approach to inhomogeneous Diophantine approximation*
, Acta Arith., to appear.