Skip to main content Accessibility help
×
Home

Formality of $\mathbb{P}$ -objects

  • Andreas Hochenegger (a1) and Andreas Krug (a2)

Abstract

We show that a $\mathbb{P}$ -object and simple configurations of $\mathbb{P}$ -objects have a formal derived endomorphism algebra. Hence the triangulated category (classically) generated by such objects is independent of the ambient triangulated category. We also observe that the category generated by the structure sheaf of a smooth projective variety over the complex numbers only depends on its graded cohomology algebra.

Copyright

References

Hide All
[Abu17] Abuaf, R., Homological units , Int. Math. Res. Not. IMRN 2017 (2017), 69436960.
[Add16] Addington, N., New derived symmetries of some hyperkähler varieties , Algebr. Geom. 3 (2016), 223260.
[AL17a] Anno, R. and Logvinenko, T., Spherical DG-functors , J. Eur. Math. Soc. (JEMS) 19 (2017), 25772656.
[AL17b] Anno, R. and Logvinenko, T., On uniqueness of $\mathsf{P}\!$ -twists, Preprint (2017), arXiv:1711.06649.
[ACRT18] Anthes, B., Cattaneo, A., Rollenske, S. and Tomassini, A., -complex symplectic and Calabi–Yau manifolds: Albanese map, deformations and period maps , Ann. Global Anal. Geom. 54 (2018), 377398.
[Ang14] Angella, D., Cohomological aspects in complex non-Kähler geometry, Lecture Notes in Mathematics, vol. 2095 (Springer, Cham, 2014).
[BS01] Balmer, P. and Schlichting, M., Idempotent completion of triangulated categories , J. Algebra 236 (2001), 819834.
[BHPV04] Barth, W., Hulek, K., Peters, C. and van de Ven, A., Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 4, second edition (Springer, Berlin, 2004).
[BL94] Bernstein, J. and Lunts, V. A., Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578 (Springer, Berlin, 1994).
[Blo10] Block, J., Duality and equivalence of module categories in noncommutative geometry , in A celebration of the mathematical legacy of Raoul Bott, CRM Proceedings Lecture Notes, vol. 50, ed. Kotiuga, P. R. (American Mathematical Society, Providence, RI, 2010), 311339.10.1090/crmp/050/24
[BKR01] Bridgeland, T., King, A. and Reid, M., The McKay correspondence as an equivalence of derived categories , J. Amer. Math. Soc. 14 (2001), 535554.
[Bon83] Bongartz, K., Algebras and quadratic forms , J. Lond. Math. Soc. (2) 28 (1983), 462469.
[BK99] Butler, M. C. R. and King, A. D., Minimal resolutions of algebras , J. Algebra 212 (1999), 323362.
[CKS03] Căldăraru, A., Katz, S. and Sharpe, E., D-branes, B fields, and Ext groups , Adv. Theor. Math. Phys. 7 (2003), 381404.
[Căl00] Căldăraru, A., Derived categories of twisted sheaves on Calabi–Yau manifolds, PhD thesis, Cornell University (2000).
[Col94] Collins, D. J., Relations among the squares of the generators of the braid group , Invent. Math. 117 (1994), 525529.10.1007/BF01232254
[DGMS75] Deligne, P., Griffiths, P., Morgan, J. and Sullivan, D., Real homotopy theory of Kähler manifolds , Invent. Math. 29 (1975), 245274.
[Eil56] Eilenberg, S., Homological dimension and syzygies , Ann. of Math. (2) 64 (1956), 328336.
[GK14] Ganter, N. and Kapranov, M., Symmetric and exterior powers of categories , Transform. Groups 19 (2014), 57103.10.1007/s00031-014-9255-z
[Hai01] Haiman, M., Hilbert schemes, polygraphs and the Macdonald positivity conjecture , J. Amer. Math. Soc. 14 (2001), 9411006.
[HKP16] Hochenegger, A., Kalck, M. and Ploog, D., Spherical subcategories in algebraic geometry , Math. Nachr. 289 (2016), 14501465.
[HKP19] Hochenegger, A., Kalck, M. and Ploog, D., Spherical subcategories in representation theory , Math. Z. 291 (2019), 113147.10.1007/s00209-018-2075-4
[HP19] Hochenegger, A. and Ploog, D., Rigid divisors on surfaces , Izv. Math. 83 (2019), doi:10.1070/IM8721.
[Huy06] Huybrechts, D., Fourier–Mukai transforms in algebraic geometry (Clarendon Press, Oxford, 2006).
[HT06] Huybrechts, D. and Thomas, R. P., ℙ-objects and autoequivalences of derived categories , Math. Res. Lett. 13 (2006), 8798.10.4310/MRL.2006.v13.n1.a7
[Kad88] Kadeishvili, T., Structure of A ()-algebra and Hochschild and Harrison cohomology , Proc. A. Razmadze Math. Inst. 91 (1988), 2027 (in Russian); also Preprint (2002), arXiv:math/0210331 (in English).
[Kel94] Keller, B., Deriving DG categories , Ann. Sci. Éc. Norm. Supér (4) 27 (1994), 63102.
[Kel06a] Keller, B., On differential graded categories , in Proceedings of the International Congress of Mathematicians, Madrid 2006, vol. 2, eds Sanz-Solé, M., Soria, J., Varona, J. L. and Verdera, J. (European Mathematical Society, Zurich, 2006), 151190.
[Kel06b] Keller, B., A-infinity algebras, modules and functor categories , in Trends in representation theory of algebras and related topics, Contemporary Mathematics, vol. 406, eds de la Peña, J. and Bautista, R. (American Mathematical Society, Providence, RI, 2006), 6793.
[Kel07] Keller, B., Derived categories and tilting , in Handbook of tilting theory, London Mathematical Society Lecture Note Series, vol. 332, eds Angeleri Hügel, L., Happel, D. and Krause, H. (Cambridge University Press, Cambridge, 2007), 49104.
[KYZ09] Keller, B., Yang, D. and Zhou, G., The Hall algebra of a spherical object , J. Lond. Math. Soc. (2) 80 (2009), 771784.
[Kru15] Krug, A., On derived autoequivalences of Hilbert schemes and generalised Kummer varieties , Int. Math. Res. Not. IMRN 2015 (2015), 1068010701.
[Kru18] Krug, A., Varieties with ℙ-units , Trans. Amer. Math. Soc. 370 (2018), 79597983.
[KPS18] Krug, A., Ploog, D. and Sosna, P., Derived categories of resolutions of cyclic quotient singularities , Quart. J. Math. 69 (2018), 509548.
[KL15] Kuznetsov, A. and Lunts, V., Categorical resolutions of irrational singularities , Int. Math. Res. Not. IMRN 2015 (2015), 45264625.
[Leh99] Lehn, M., Chern classes of tautological sheaves on Hilbert schemes of points on surfaces , Invent. Math. 136 (1999), 157207.
[LO10] Lunts, V. and Orlov, D., Uniqueness of enhancement for triangulated categories , J. Amer. Math. Soc. 23 (2010), 853908.
[LS16] Lunts, V. and Schnürer, O., New enhancements of derived categories of coherent sheaves and applications , J. Algebra 446 (2016), 203274.10.1016/j.jalgebra.2015.09.017
[MW18] Mak, C. Y. and Wu, W., Dehn twists exact sequences through Lagrangian cobordism , Compos. Math. 154 (2018), 24852533.
[Nee01] Neeman, A., Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton, NJ, 2001).10.1515/9781400837212
[NT78] Neisendorfer, J. and Taylor, L., Dolbeault homotopy theory , Trans. Amer. Math. Soc. 245 (1978), 183210.
[PS14] Ploog, D. and Sosna, P., On autoequivalences of some Calabi–Yau and hyperkähler varieties , Int. Math. Res. Not. IMRN 2014 (2014), 60946110.
[RW11] Roitzheim, C. and Whitehouse, S., Uniqueness of A -structures and Hochschild cohomology , Algebr. Geom. Topol. 11 (2011), 107143.
[Sca09] Scala, L., Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles , Duke Math. J. 150 (2009), 211267.
[ST01] Seidel, P. and Thomas, R. P., Braid group actions on derived categories of coherent sheaves , Duke Math. J. 108 (2001), 37108.
[Seg18] Segal, E., All autoequivalences are spherical , Int. Math. Res. Not. IMRN 2018 (2018), 31373154.
[Toë11] Toën, B., Lectures on DG-categories , in Topics in algebraic and topological K-theory, Lecture Notes in Mathematics, vol. 2008, ed. Cortiñas, G. (Springer, Heidelberg, 2011), 243302.
[Voi02] Voisin, C., Hodge theory and complex algebraic geometry I, Cambridge Studies in Advanced Mathematics, vol. 76 (Cambridge University Press, Cambridge, 2002).
[Wei94] Weibel, C. A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Formality of $\mathbb{P}$ -objects

  • Andreas Hochenegger (a1) and Andreas Krug (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.