Skip to main content Accessibility help
×
Home

Foliations on unitary Shimura varieties in positive characteristic

  • Ehud de Shalit (a1) and Eyal Z. Goren (a2)

Abstract

When $p$ is inert in the quadratic imaginary field $E$ and $m<n$ , unitary Shimura varieties of signature $(n,m)$ and a hyperspecial level subgroup at $p$ , carry a natural foliationof height 1 and rank $m^{2}$ in the tangent bundle of their special fiber $S$ . We study this foliation and show that it acquires singularities at deep Ekedahl–Oort strata, but that these singularities are resolved if we pass to a natural smooth moduli problem $S^{\sharp }$ , a successive blow-up of $S$ . Over the ( $\unicode[STIX]{x1D707}$ -)ordinary locus we relate the foliation to Moonen’s generalized Serre–Tate coordinates. We study the quotient of $S^{\sharp }$ by the foliation, and identify it as the Zariski closure of the ordinary-étale locus in the special fiber $S_{0}(p)$ of a certain Shimura variety with parahoric level structure at $p$ . As a result, we get that this ‘horizontal component’ of $S_{0}(p)$ , as well as its multiplicative counterpart, are non-singular (formerly they were only known to be normal and Cohen–Macaulay). We study two kinds of integral manifolds of the foliation: unitary Shimura subvarieties of signature $(m,m)$ , and a certain Ekedahl–Oort stratum that we denote $S_{\text{fol}}$ . We conjecture that these are the only integral submanifolds.

Copyright

References

Hide All
[BW06] Bültel, O. and Wedhorn, T., Congruence relations for Shimura varieties associated to some unitary groups , J. Inst. Math. Jussieu 5 (2006), 229261.
[DI87] Deligne, P. and Illusie, L., Relèvements modulo p 2 et décomposition du complexe de de Rham , Invent. Math. 89 (1987), 247270.
[deSG16] de Shalit, E. and Goren, E. Z., A theta operator on Picard modular forms modulo an inert prime , Res. Math. Sci. 3 (2016), paper no. 28.
[deSG17] de Shalit, E. and Goren, E. Z., Theta operators on unitary Shimura varieties, Preprint (2017),arXiv:1712.06969.
[deSG18] de Shalit, E. and Goren, E. Z., On the bad reduction of certain U (2, 1) Shimura varieties , in Geometry, algebra, number theory and their information technology applications, Springer Proceedings in Mathematics & Statistics, eds Akbary, A. and Gun, S. (2018), to appear,arXiv:1703.05720.
[Eis95] Eisenbud, D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995).
[Eke87] Ekedahl, T., Foliations and inseparable morphisms , in Algebraic geometry, Bowdin 1985, Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 139149.
[GN17] Goldring, W. and Nicole, M.-H., The 𝜇-ordinary Hasse invariant of unitary Shimura varieties , J. Reine Angew. Math. 728 (2017), 137151.
[Gör01] Görtz, U., On the flatness of models of certain Shimura varieties of PEL type , Math. Ann. 321 (2001), 689727.
[Gro74] Grothendieck, A., Groupes de Barsotti–Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, vol. 45 (Les presses de l’Université de Montréal, 1974).
[Har92] Harris, J., Algebraic geometry: a first course (Springer, New York, 1992).
[Jac75] Jacobson, N., Lectures in abstract algebra. III. Theory of fields and Galois theory, Graduate Texts in Mathematics, vol. 32 (Springer, New York–Heidelberg, 1975), Second corrected printing.
[Kat70] Katz, N., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin , Publ. Math. Inst. Hautes Études Sci. 39 (1970), 175232.
[Kot92] Kottwitz, R. E., Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373444.
[Kun69] Kunz, E., Characterizations of regular local rings of characteristic p , Amer. J. Math. 91 (1969), 772784.
[Lan13] Lan, K.-W., Arithmetic compactifications of PEL-type Shimura varieties, London Mathematical Society Monographs, vol. 36 (Princeton University Press, Princeton, 2013).
[Miy87] Miyaoka, Y., Deformation of a morphism along a foliation , in Algebraic geometry, Bowdin 1985, Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 245268.
[Moo01] Moonen, B., Group schemes with additional structures and Weyl group elements , in Moduli of abelian varieties, Progress in Mathematics, vol. 195, eds Faber, C., van der Geer, G. and Oort, F. (Birkhäuser, Basel, 2001), 255298.
[Moo04] Moonen, B., Serre–Tate theory for moduli spaces of PEL type , Ann. Sci. Éc. Norm. Supér. (4) 37 (2004), 223269.
[Oor01] Oort, F., A stratification of a moduli space of abelian varieties , in Moduli of abelian varieties, Progress in Mathematics, vol. 195, eds Faber, C., van der Geer, G. and Oort, F. (Birkhäuser, 2001), 345416.
[PZ13] Pappas, G. and Zhu, X., Local models of Shimura varieties and a conjecture of Kottwitz , Invent. Math. 194 (2013), 147254.
[RZ96] Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, 1996).
[Ray74] Raynaud, M., Schémas en groupes de type (p, …, p) , Bull. Soc. Math. France 102 (1974), 241250.
[RS76] Rudakov, A. N. and Shafarevich, I. R., Inseparable morphisms of algebraic surfaces , Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 12691307.
[Vas11] Vasiu, A., Manin problems for Shimura varieties of Hodge type , J. Ramanujan Math. Soc. 26 (2011), 3184.
[VW13] Viehmann, E. and Wedhorn, T., Ekedahl–Oort and Newton strata for Shimura varieties of PEL type , Math. Ann. 356 (2013), 14931550.
[Wed01] Wedhorn, T., The dimension of Oort strata of Shimura varieties of PEL-type , in Moduli of abelian varieties, Progress in Mathematics, vol. 195, eds Faber, C., van der Geer, G. and Oort, F. (Birkhäuser, 2001), 441471.
[Woo16] Wooding, A., The Ekedahl–Oort stratification of unitary Shimura varieties, PhD thesis, McGill University (2016).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Foliations on unitary Shimura varieties in positive characteristic

  • Ehud de Shalit (a1) and Eyal Z. Goren (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.