Skip to main content Accessibility help
×
Home

Finiteness theorems for algebraic groups over function fields

  • Brian Conrad (a1)

Abstract

We prove the finiteness of class numbers and Tate–Shafarevich sets for all affine group schemes of finite type over global function fields, as well as the finiteness of Tamagawa numbers and Godement’s compactness criterion (and a local analogue) for all such groups that are smooth and connected. This builds on the known cases of solvable and semi-simple groups via systematic use of the recently developed structure theory and classification of pseudo-reductive groups.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Finiteness theorems for algebraic groups over function fields
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Finiteness theorems for algebraic groups over function fields
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Finiteness theorems for algebraic groups over function fields
      Available formats
      ×

Copyright

References

Hide All
[Art69]Artin, M., Algebraization of formal moduli: I, in Global analysis (papers in honor of K. Kodaira) (University of Tokyo Press, Tokyo, 1969), 2171.
[Bor98]Borcherds, R., Coxeter groups, Lorentzian lattices, and K3 surfaces, Int. Math. Res. Not. IMRN 19 (1998), 10111031.
[Bor63]Borel, A., Some finiteness properties of adele groups over number fields, Publ. Math. Inst. Hautes Études Sci. 16 (1963), 530.
[Bor91]Borel, A., Linear algebraic groups, second edition (Springer, New York, 1991).
[BH62]Borel, A. and Harish-Chandra, , Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485535.
[BP90]Borel, A. and Prasad, G., Addendum to ‘Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups’, Publ. Math. Inst. Hautes Études Sci. 71 (1990), 173177.
[BS64]Borel, A. and Serre, J.-P., Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111164.
[BT65]Borel, A. and Tits, J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55151.
[BT73]Borel, A. and Tits, J., Homomorphismes ‘abstraits’ de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499571.
[BT78]Borel, A. and Tits, J., Théorèmes de structure et de conjugaison pour les groupes algébriques linéaires, C. R. Acad. Sci. Paris (A) 287 (1978), 5557.
[BLR90]Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models (Springer, New York, 1990).
[Bou98]Bourbaki, N., General topology (Springer, New York, 1998), Chapters 5–10.
[Bri09]Brion, M., Anti-affine algebraic groups, J. Algebra 321 (2009), 934952.
[Bro]Broshi, M., G-torsors over a Dedekind scheme, J. Pure Appl. Algebra, to appear.
[BrT84]Bruhat, F. and Tits, J., Groupes algébriques sur un corps local. Chapitre II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197376.
[BrT87]Bruhat, F. and Tits, J., Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA 34 (1987), 671698.
[Che60]Chevalley, C., Une démonstration d’un théorème sur les groupes algébriques, J. Math. Pures Appl. (9) 39 (1960), 307317.
[CS04]Colmez, P. and Serre, J.-P., Grothendieck–Serre correspondence, bilingual edition (American Mathematical Society and Société Mathématique de France, 2004).
[Con02]Conrad, B., A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanujan Math. Soc. 17 (2002), 118.
[Con10]Conrad, B., Weil and Grothendieck approaches to adelic points, 2010 (submitted).
[CGP10]Conrad, B., Gabber, O. and Prasad, G., Pseudo–reductive groups (Cambridge University Press, Cambridge, 2010).
[DG70]Demazure, M. and Gabriel, P., Groupes algébriques (Masson, Paris, 1970).
[SGA3]Demazure, M. and Grothendieck, A., Schémas en groupes I, II, III, Lecture Notes in Mathematics, vols 151, 152, 153 (Springer, New York, 1970).
[GM]Gille, P. and Moret-Bailly, L., Actions algébriques de groupes arithmétiques, in Torsors, theory and applications (Edinburgh, 2011), Proceedings of the London Mathematical Society, eds V. Batyrev and A. Skorobogatov (London Mathematical Society, London), to appear.
[EGA]Grothendieck, A., Eléments de Géométrie Algébrique, Publ. Math. Inst. Hautes Études Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1960–67).
[Gro68]Grothendieck, A., Le groupe de Brauer III: exemples et compléments, in Dix Exposés sur la cohomologie des schémas (North-Holland, Amsterdam, 1968), 88188.
[SGA1]Grothendieck, A., Revêtements étale et Groupe Fondamental, Lecture Notes in Mathematics, vol. 224 (Springer, New York, 1971).
[Har69]Harder, G., Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 3354.
[Har75]Harder, G., Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, J. Reine Angew. Math. 274/5 (1975), 125138.
[Lan96]Landvogt, E., A compactification of the Bruhat–Tits buildings, Springer Lecture Notes in Mathematics, vol. 1619 (Springer, New York, 1996).
[Maz93]Mazur, B., On the passage from local to global in number theory, Bull. Amer. Math. Soc. 29 (1993), 1450.
[Mil80]Milne, J., Étale cohomology (Princeton University Press, 1980).
[Mil86]Milne, J., Arithmetic duality theorems (Academic Press, Boston, 1986).
[MT62]Mostow, G. and Tamagawa, T., On the compactness of arithmetically defined homogeneous spaces, Ann. of Math. (2) 76 (1962), 446463.
[NSW08]Neukirch, J., Schmidt, A. and Winberg, K., Cohomology of number fields, second edition (Springer, New York, 2008).
[Nis82]Nisnevich, Y., Étale cohomology and arithmetic of semi-simple groups, PhD thesis, Harvard University (1982).
[Oes84]Oesterlé, J., Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math. 78 (1984), 1388.
[Pra77]Prasad, G., Strong approximation for semisimple groups over function fields, Ann. of Math. (2) 105 (1977), 553572.
[Pra82]Prasad, G., Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), 197202.
[Rus70]Russell, P., Forms of the affine line and its additive group, Pacific J. Math. 32 (1970), 527539.
[SS09]Sancho de Salas, C. and Sancho de Salas, F., Principal bundles, quasi-abelian varieties, and structure of algebraic groups, J. Algebra 322 (2009), 27512772.
[Ser88]Serre, J.-P., Algebraic groups and class fields (Springer, New York, 1988).
[Ser97]Serre, J.-P., Galois cohomology (Springer, New York, 1997).
[Wei82]Weil, A., Adeles and algebraic groups (Birkhäuser, Boston, 1982).
[Wil95]Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443551.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Finiteness theorems for algebraic groups over function fields

  • Brian Conrad (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.