Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.234 Render date: 2021-03-04T21:18:20.659Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

The essentially tame local Langlands correspondence, II: totally ramified representations

Published online by Cambridge University Press:  21 June 2005

Colin J. Bushnell
Affiliation:
Department of Mathematics, King's College, Strand, London WC2R 2LS, UKbushnell@mth.kcl.ac.uk
Guy Henniart
Affiliation:
Département de Mathématiques et UMR 8628 du CNRS, Bâtiment 425, Université de Paris-Sud, 91405 Orsay cedex, FranceGuy.Henniart@math.u-psud.fr
Rights & Permissions[Opens in a new window]

Abstract

Let F be a non-Archimedean local field. Let $\mathcal{G}_n^{\rm et}(F)$ be the set of equivalence classes of irreducible, n-dimensional representations of the Weil group $\mathcal{W}_F$ of F which are essentially tame. Let $\mathcal{A}_n^{\rm et}(F)$ be the set of equivalence classes of irreducible, essentially tame, supercuspidal representations of GLn(F). The Langlands correspondence induces a canonical bijection $\mathcal{L}:\mathcal{G}_n^{\rm et}(F) \to \mathcal{A}_n^{\rm et}(F)$. We continue the programme of describing this map in terms of explicit descriptions of the sets $\mathcal{G}_n^{\rm et}(F)$ and $\mathcal{A}_n^{\rm et}(F)$. These descriptions are in terms of admissible pairs $(E/F, \xi)$, consisting of a tamely ramified field extension $E/F$ of degree n and a quasicharacter $\xi$ of $E^\times$ subject to certain technical conditions. If Pn(F) is the set of isomorphism classes of admissible pairs of degree n, we have explicit bijections $P_n(F) \cong \mathcal{G}_n^{\rm et}(F)$ and $P_n(F) \cong \mathcal{A}_n^{\rm et}(F)$. In an earlier paper we showed that, if $\sigma \in \mathcal{G}_n^{\rm et}(F)$ corresponds to an admissible pair $(E/F,\xi)$, then $\mathcal{L}(\sigma)$ corresponds to the admissible pair $(E/F,\mu\xi)$, for a certain tamely ramified character $\mu$ of $E^\times$. In this paper, we determine the character $\mu$ when $E/F$ is totally ramified.

Type
Research Article
Copyright
Foundation Compositio Mathematica 2005

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 292 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The essentially tame local Langlands correspondence, II: totally ramified representations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The essentially tame local Langlands correspondence, II: totally ramified representations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The essentially tame local Langlands correspondence, II: totally ramified representations
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *