Skip to main content Accessibility help

Deformation spaces and normal forms around transversals

  • Francis Bischoff (a1), Henrique Bursztyn (a2), Hudson Lima (a3) and Eckhard Meinrenken (a4)


Given a manifold $M$ with a submanifold $N$ , the deformation space ${\mathcal{D}}(M,N)$ is a manifold with a submersion to $\mathbb{R}$ whose zero fiber is the normal bundle $\unicode[STIX]{x1D708}(M,N)$ , and all other fibers are equal to $M$ . This article uses deformation spaces to study the local behavior of various geometric structures associated with singular foliations, with $N$ a submanifold transverse to the foliation. New examples include $L_{\infty }$ -algebroids, Courant algebroids, and Lie bialgebroids. In each case, we obtain a normal form theorem around $N$ , in terms of a model structure over $\unicode[STIX]{x1D708}(M,N)$ .



Hide All
[AS09]Androulidakis, I. and Skandalis, G., The holonomy groupoid of a singular foliation, J. Reine Angew. Math. 626 (2009), 137.
[AZ16]Androulidakis, I. and Zambon, M., Stefan-Sussmann singular foliations, singular subalgebroids and their associated sheaves, Int. J. Geom. Methods Mod. Phys. 13(suppl.) (2016), 1641001.
[BP13]Bonavolontà, G. and Poncin, N., On the category of Lie n-algebroids, J. Geom. Phys. 73 (2013), 7090.
[Bru11]Bruce, A., From L -algebroids to higher Schouten/Poisson structures, Rep. Math. Phys. 67 (2011), 157177.
[BLM19]Bursztyn, H., Lima, H. and Meinrenken, E., Splitting theorems for Poisson and related structures, J. Reine Angew. Math. 754 (2019), 281312.
[BPS09]Bursztyn, H., Ponte, D. I. and Severa, P., Courant morphisms and moment maps, Math. Res. Lett. 16 (2009), 215232.
[CF07]Cattaneo, A. and Felder, G., Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math. 208 (2007), 521548.
[Con85]Conn, J. F., Normal forms for smooth Poisson structures, Ann. of Math. (2) 121 (1985), 565593.
[Con94]Connes, A., Noncommutative geometry (Academic Press, San Diego, CA, 1994).
[CF11]Crainic, M. and Fernandes, R. L., A geometric approach to Conn’s linearization theorem, Ann. of Math. (2) 173 (2011), 11211139.
[D01]Dufour, J.-P., Normal forms for Lie algebroids, in Lie algebroids and related topics in differential geometry (Warsaw, 2000), Banach Center Publ., vol. 54 (Polish Acad. Sci. Inst. Math., Warsaw, 2001), 3541.
[Fer00]Fernandes, R., Connections in Poisson geometry. I. Holonomy and invariants, J. Differential Geom. 54 (2000), 303365.
[Fre19]Frejlich, P., Submersions by Lie algebroids, J. Geom. Phys. 137 (2019), 237246.
[FM17]Frejlich, P. and Marcut, I., The normal form theorem around Poisson transversals, Pacific J. Math. 287 (2017), 371391.
[Ful84]Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2 (Springer, Berlin, 1984).
[GY19]Garmendia, A. and Yudilevich, O., On the inner automorphisms of a singular foliation, Math. Z. 293 (2019), 725729.
[GJ11]Grabowski, J. and Jóźwikowski, M., Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optim. 49 (2011), 13061357.
[GR09]Grabowski, J. and Rotkiewicz, M., Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys. 59 (2009), 12851305.
[GU97]Grabowski, J. and Urbanski, P., Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys. 40 (1997), 195208.
[GX12]Grützmann, M. and Xu, X., Cohomology for almost Lie algebroids, Preprint (2012), arXiv:1206.5466.
[HH18]Haj Saeedi Sadegh, A. R. and Higson, N., Euler-like vector fields, deformation spaces and manifolds with filtered structure, Doc. Math. 23 (2018), 293325.
[Her62]Hermann, R., The differential geometry of foliations. II, J. Math. Mech. 11 (1962), 303315.
[HM90]Higgins, P. J. and Mackenzie, K., Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194230.
[Hig10]Higson, N., The tangent groupoid and the index theorem, in Quanta of maths, Clay Mathematics Proceedings, vol. 11 (American Mathematical Society, Providence, RI, 2010), 241256.
[HS87]Hilsum, M. and Skandalis, G., Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes), Ann. Sci. Éc. Norm. Supér. (4) 20 (1987), 325390.
[Jot19]Jotz Lean, M., Lie 2-algebroids and matched pairs of 2-representations: a geometric approach, Pacific J. Math. 301 (2019), 143188.
[KS94]Kashiwara, M. and Schapira, P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292 (Springer, Berlin, 1994).
[LLS18]Laurent-Gengoux, C., Lavau, S. and Strobl, T., The universal Lie infinity-algebroid of a singular foliation, Preprint (2018), arXiv:1806.00475.
[LM09]Li-Bland, D. and Meinrenken, E., Courant algebroids and Poisson geometry, Int. Math. Res. Not. IMRN 11 (2009), 21062145.
[Lim17]Lima, H., On the local structure of brackets, PhD thesis, IMPA (2017).
[LWX97]Liu, Z.-J., Weinstein, A. and Xu, P., Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), 547574.
[MX94]Mackenzie, K. and Xu, P., Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415452.
[Mei13]Meinrenken, E., Lie groups and Clifford algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 58 (Springer, Heidelberg, 2013).
[Mei18]Meinrenken, E., Poisson geometry from a Dirac perspective, Lett. Math. Phys. 108 (2018), 447498.
[MZ04]Monnier, P. and Zung, N. T., Levi decomposition for smooth Poisson structures, J. Differential Geom. 68 (2004), 347395.
[OP05]Oh, Y.-G. and Park, J.-S., Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math. 161 (2005), 287360.
[PS18]Pym, B. and Safronov, P., Shifted symplectic Lie algebroids, Int. Math. Res. Not. IMRN (2018), rny215; doi:10.1093/imrn/rny215.
[Roy99]Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds, PhD thesis, UC Berkeley (1999), arXiv:math.DG/9910078.
[SSS12]Sati, H., Schreiber, U. and Stasheff, J., Twisted differential string and fivebrane structures, Comm. Math. Phys. 315 (2012), 169213.
[S̆ev]S̆evera, P., Letters to Alan Weinstein, 1998–2000, available at author’s website.
[S̆ev05]S̆evera, P., Some title containing the words ‘homotopy’ and ‘symplectic’, e.g. this one, Travaux Mathématiques, vol. XVI (University of Luxembourg, 2005), 121137.
[S̆ev15]S̆evera, P., Poisson Lie T-duality and Courant algebroids, Lett. Math. Phys. 105 (2015), 16891701.
[S̆W01]S̆evera, P. and Weinstein, A., Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl. (2001), 145154.
[SZ17]Sheng, Y. and Zhu, C., Higher extensions of Lie algebroids, Commun. Contemp. Math. 19 (2017), 1650034.
[Ste80]Stefan, P., Integrability of systems of vector fields, J. Lond. Math. Soc. (2) 21 (1980), 544556.
[Sus73]Sussmann, H., Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171188.
[Uch02]Uchino, K., Remarks on the definition of a Courant algebroid, Lett. Math. Phys. 60 (2002), 171175.
[Vaĭ97]Vaĭntrob, A., Lie algebroids and homological vector fields, Uspekhi Mat. Nauk 52 (1997), 161162.
[Vor05]Voronov, T., Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (2005), 133153.
[Vor10]Voronov, T., $Q$-manifolds and higher analogs of Lie algebroids, XXIX Workshop on Geometric Methods in Physics, AIP Conference Proceedings, vol. 1307 (American Institute of Physics, Melville, NY, 2010), 191–202.
[Wan17]Wang, R., On integrable systems and rigidity for PDE’s with symmetry, PhD thesis, University of Utrecht (2017), arXiv:1712.00808.
[Wei83]Weinstein, A., The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523557.
[Wei89]Weinstein, A., Blowing up realizations of Heisenberg-Poisson manifolds, Bull. Sci. Math. 113 (1989), 381406.
[Wei00]Weinstein, A., Almost invariant submanifolds for compact group actions, J. Eur. Math. Soc. (JEMS) 2 (2000), 5386.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Deformation spaces and normal forms around transversals

  • Francis Bischoff (a1), Henrique Bursztyn (a2), Hudson Lima (a3) and Eckhard Meinrenken (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.