[AS86]
Ash, A. and Stevens, G.,
*Modular forms in characteristic **l* and special values of their *L*-functions
, Duke Math. J.
53 (1986), 849–868.

[Bel12]
Bellaïche, J.,
*Critical **p*-adic *L*-functions
, Invent. Math.
189 (2012), 1–60.

[BD15]
Bellaïche, J. and Dasgupta, S.,
*The **p*-adic *L*-functions of evil Eisenstein series
, Compos. Math.
151 (2015), 999–1040.

[Col00]
Colmez, P.,
*Fonctions **L*
*p*-adiques
, in Séminaire Bourbaki, Vol. 1998/99, Exp. No. 851, Astérisque, vol. 266 (Société Mathématique de France, 2000), 3, 21–58.

[EPW06]
Emerton, M., Pollack, R. and Weston, T.,
*Variation of Iwasawa invariants in Hida families*
, Invent. Math.
163 (2006), 523–580.

[FW79]
Ferrero, B. and Washington, L. C.,
*The Iwasawa invariant 𝜇*_{
p
} vanishes for abelian number fields
, Ann. of Math. (2)
109 (1979), 377–395.

[Gre89]
Greenberg, R.,
*Iwasawa theory for **p*-adic representations
, in Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17 (Academic Press, Boston, 1989), 97–137.

[Gre99]
Greenberg, R.,
*Iwasawa theory for elliptic curves*
, in Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Mathematics, vol. 1716 (Springer, Berlin, 1999), 51–144.

[GS93]
Greenberg, R. and Stevens, G.,
*
**p*-adic *L*-functions and *p*-adic periods of modular forms
, Invent. Math.
111 (1993), 407–447.

[GV00]
Greenberg, R. and Vatsal, V.,
*On the Iwasawa invariants of elliptic curves*
, Invent. Math.
142 (2000), 17–63.

[HHO17]
Hart, W., Harvey, D. and Ong, W.,
*Irregular primes to two billion*
, Math. Comput.
86 (2017), 3031–3049.

[Hid86]
Hida, H.,
*Iwasawa modules attached to congruences of cusp forms*
, Ann. Sci. Éc. Norm. Supér (4)
19 (1986), 231–273.

[Hid12]
Hida, H., Geometric modular forms and elliptic curves, second edition (World Scientific, Hackensack, NJ, 2012).

[Kat04]
Kato, K.,
*
**p*-adic Hodge theory and values of zeta functions of modular forms
, in Cohomologies *p*-adiques et applications arithmétiques, III, Astérisque, vol. 295 (Société Mathématique de France, 2004), ix, 117–290.

[Kit94]
Kitagawa, K.,
*On standard **p*-adic *L*-functions of families of elliptic cusp forms
, in
*p*-adic monodromy and the Birch and Swinnerton–Dyer conjecture (Boston, MA, 1991), Contemporary Mathematics, vol. 165 (American Mathematical Society, Providence, RI, 1994), 81–110.

[Kur93]
Kurihara, M.,
*Ideal class groups of cyclotomic fields and modular forms of level 1*
, J. Number Theory
45 (1993), 281–294.

[Mah58]
Mahler, K.,
*An interpolation series for continuous functions of a **p*-adic variable
, J. Reine Angew. Math.
199 (1958), 23–34.

[Maz78]
Mazur, B.,
*Modular curves and the Eisenstein ideal*
, Publ. Math. Inst. Hautes Études Sci. (1978), 33–186, 1977.

[Oht99]
Ohta, M.,
*Ordinary **p*-adic étale cohomology groups attached to towers of elliptic modular curves
, Compos. Math.
115 (1999), 241–301.

[Oht00]
Ohta, M.,
*Ordinary **p*-adic étale cohomology groups attached to towers of elliptic modular curves. II
, Math. Ann.
318 (2000), 557–583.

[Oht03]
Ohta, M.,
*Congruence modules related to Eisenstein series*
, Ann. Sci. Éc. Norm. Supér. (4)
36 (2003), 225–269.

[Oht05]
Ohta, M.,
*Companion forms and the structure of **p*-adic Hecke algebras
, J. Reine Angew. Math.
585 (2005), 141–172.

[PS11]
Pollack, R. and Stevens, G.,
*Overconvergent modular symbols and **p*-adic *L*-functions
, Ann. Sci. Éc. Norm. Supér. (4)
44 (2011), 1–42.

[PS13]
Pollack, R. and Stevens, G.,
*Critical slope **p*-adic *L*-functions
, J. Lond. Math. Soc. (2)
87 (2013), 428–452.

[Rib76]
Ribet, K. A.,
*A modular construction of unramified **p*-extensions of **Q**(𝜇_{
p
})
, Invent. Math.
34 (1976), 151–162.

[Sha11]
Sharifi, R.,
*A reciprocity map and the two-variable **p*-adic *L*-function
, Ann. of Math. (2)
173 (2011), 251–300.

[Shi76]
Shimura, G.,
*The special values of the zeta functions associated with cusp forms*
, Comm. Pure Appl. Math.
29 (1976), 783–804.

[SU14]
Skinner, C. and Urban, E.,
*The Iwasawa main conjectures for GL*_{2}
, Invent. Math.
195 (2014), 1–277.

[Til97]
Tilouine, J.,
*Hecke algebras and the Gorenstein property*
, in Modular forms and Fermat’s last theorem (Boston, MA, 1995) (Springer, New York, 1997), 327–342.

[Vat99]
Vatsal, V.,
*Canonical periods and congruence formulae*
, Duke Math. J.
98 (1999), 397–419.

[Wak15]
Wake, P.,
*Hecke algebras associated to 𝛬-adic modular forms*
, J. Reine Angew. Math.
700 (2015), 113–128.

[Wil90]
Wiles, A.,
*The Iwasawa conjecture for totally real fields*
, Ann. of Math. (2)
131 (1990), 493–540.

[Wil95]
Wiles, A.,
*Modular elliptic curves and Fermat’s last theorem*
, Ann. of Math. (2)
141 (1995), 443–551.