Skip to main content Accessibility help

Composite quasianalytic functions

  • André Belotto da Silva (a1), Edward Bierstone (a2) and Michael Chow (a3)

We prove two main results on Denjoy–Carleman classes: (1) a composite function theorem which asserts that a function $f(x)$ in a quasianalytic Denjoy–Carleman class ${\mathcal{Q}}_{M}$ , which is formally composite with a generically submersive mapping $y=\unicode[STIX]{x1D711}(x)$ of class ${\mathcal{Q}}_{M}$ , at a single given point in the source (or in the target) of $\unicode[STIX]{x1D711}$ can be written locally as $f=g\circ \unicode[STIX]{x1D711}$ , where $g(y)$ belongs to a shifted Denjoy–Carleman class ${\mathcal{Q}}_{M^{(p)}}$ ; (2) a statement on a similar loss of regularity for functions definable in the $o$ -minimal structure given by expansion of the real field by restricted functions of quasianalytic class ${\mathcal{Q}}_{M}$ . Both results depend on an estimate for the regularity of a ${\mathcal{C}}^{\infty }$ solution $g$ of the equation $f=g\circ \unicode[STIX]{x1D711}$ , with $f$ and $\unicode[STIX]{x1D711}$ as above. The composite function result depends also on a quasianalytic continuation theorem, which shows that the formal assumption at a given point in (1) propagates to a formal composition condition at every point in a neighbourhood.

Hide All
[BdSBB17] Belotto da Silva, A., Biborski, I. and Bierstone, E., Solutions of quasianalytic equations , Selecta Math. (N.S.) 23 (2017), 25232552.
[BM88] Bierstone, E. and Milman, P. D., Semianalytic and subanalytic sets , Publ. Math. Inst. Hautes Études Sci. 67 (1988), 542.
[BM97] Bierstone, E. and Milman, P. D., Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant , Invent. Math. 128 (1997), 207302.
[BM04] Bierstone, E. and Milman, P. D., Resolution of singularities in Denjoy–Carleman classes , Selecta Math. (N.S.) 10 (2004), 128.
[BMV15] Bierstone, E., Milman, P. D. and Valette, G., Arc-quasianalytic functions , Proc. Amer. Math. Soc. 143 (2015), 39153925.
[Bor00] Borel, E., Sur la généralisation du prolongement analytique , C. R. Math. Acad. Sci. Paris 130 (1900), 11151118.
[Car26] Carleman, T., Les fonctions quasi-analytiques, Collection Borel (Gauthier-Villars, Paris, 1926).
[CC99] Chaumat, J. and Chollet, A., Sur la division et la composition dans des classes ultradifférentiables , Studia Math. 136 (1999), 4970.
[Den21] Denjoy, A., Sur les fonctions quasi-analytiques de variable reélle , C. R. Math. Acad. Sci. Paris 173 (1921), 13291331.
[Gla63] Glaeser, G., Fonctions composées différentiables , Ann. of Math. (2) 77 (1963), 193209.
[Had23] Hadamard, J., Lectures on Cauchy’s problem in linear partial differential equations (Yale University Press, New Haven, 1923).
[Hör83] Hörmander, L., The analysis of linear partial differential operators I (Springer, Berlin–Heidelberg–New York, 1983).
[Jaf16] Jaffe, E., Pathological phenomena in Denjoy–Carleman classes , Canad. J. Math. 68 (2016), 88108.
[Kom79] Komatsu, H., The implicit function theorem for ultradifferentiable mappings , Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 6972.
[Mal77] Malgrange, B., Frobenius avec singularités, 2. Le cas général , Invent. Math. 39 (1977), 6789.
[Man52] Mandelbrojt, S., Séries Adhérentes, Régularisation des Suites, Applications, Collection Borel (Gauthiers-Villars, Paris, 1952).
[Mil95] Miller, C., Infinite differentiability in polynomially bounded o-minimal structures , Proc. Amer. Math. Soc. 123 (1995), 25512555.
[Now11] Nowak, K. J., A note on Bierstone-Milman-Pawłucki’s paper ‘Composite differentiable functions’ , Ann. Polon. Math. 102 (2011), 293299.
[Now13] Nowak, K. J., On division of quasianalytic function germs , Int. J. Math. 13 (2013), 15.
[Now15] Nowak, K. J., Quantifier elimination in quasianalytic structures via non-standard analysis , Ann. Polon. Math. 114 (2015), 235267.
[RSW03] Rolin, J.-P., Speissegger, P. and Wilkie, A. J., Quasianalytic Denjoy–Carleman classes and o-minimality , J. Amer. Math. Soc. 16 (2003), 751777.
[Rou62/63] Roumieu, C., Ultradistributions définies sur ℝ n et sur certaines classes de variétés différentiables , J. Anal. Math. 10 (1962–63), 153192.
[Thi08] Thilliez, V., On quasianalytic local rings , Expo. Math. 26 (2008), 123.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed