Skip to main content Accessibility help
×
×
Home

Cohen–Lenstra heuristics for étale group schemes and symplectic pairings

  • Michael Lipnowski (a1) and Jacob Tsimerman (a2)
Abstract

We generalize the Cohen–Lenstra heuristics over function fields to étale group schemes $G$ (with the classical case of abelian groups corresponding to constant group schemes). By using the results of Ellenberg–Venkatesh–Westerland, we make progress towards the proof of these heuristics. Moreover, by keeping track of the image of the Weil-pairing as an element of $\wedge ^{2}G(1)$ , we formulate more refined heuristics which nicely explain the deviation from the usual Cohen–Lenstra heuristics for abelian $\ell$ -groups in cases where $\ell \mid q-1$ ; the nature of this failure was suggested already in the works of Malle, Garton, Ellenberg–Venkatesh–Westerland, and others. On the purely large random matrix side, we provide a natural model which has the correct moments, and we conjecture that these moments uniquely determine a limiting probability measure.

Copyright
References
Hide All
[Ach06] Achter, J., The distribution of class groups of function fields , J. Pure Appl. Algebra 204 (2006), 316333.10.1016/j.jpaa.2005.04.003
[Bha05] Bhargava, M., The density of discriminants of quartic rings and fields , Ann. of Math. (2) 162 (2005), 10311063.10.4007/annals.2005.162.1031
[CL84] Cohen, H. and Lenstra, H., Heuristics on class groups of number fields , in Number theory, Noordwijkerhout 1983, Noordwijkerhout, 1983, Lecture Notes in Mathematics, vol. 1068 (Springer, Berlin, 1984), 3362.10.1007/BFb0099440
[DH71] Davenport, H. and Heilbronn, H., On the density of discriminants of cubic fields. II , Proc. R. Soc. Lond. Ser. A 322 (1971), 405420.10.1098/rspa.1971.0075
[EVW16] Ellenberg, J. S., Venkatesh, A. and Westerland, C., Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields , Ann. of Math. (2) 183 (2016), 729786.10.4007/annals.2016.183.3.1
[FK07] Fouvry, E. and Klüners, J., On the 4-rank of class groups of quadratic number fields , Invent. Math. 167 (2007), 455513.10.1007/s00222-006-0021-2
[FW89] Friedman, E. and Washington, L., On the distribution of divisor class groups of curves over a finite field , in Théorie des nombres, Quebec, PQ, 1987 (de Gruyter, Berlin, 1989), 227239.
[Gar15] Garton, D., Random matrices, Cohen–Lenstra heuristics, and roots of unity , Algebra Number Theory 9 (2015), 149171.10.2140/ant.2015.9.149
[Hal08] Hall, C., Big symplectic or orthogonal monodromy modulo , Duke Math. J. 141 (2008), 179203.10.1215/S0012-7094-08-14115-8
[Kly16] Klys, J., The distribution of $p$ -torsion in degree $p$ cyclic fields, Preprint (2016), arXiv:1610.00226v1.
[Mal10] Malle, G., On the distribution of class groups of number fields , Experiment. Math. 19 (2010), 465474.10.1080/10586458.2010.10390636
[Mic06] Michael, A. A. G., Finite abelian actions on surfaces , Topology Appl. 153 (2006), 25912612.10.1016/j.topol.2005.05.010
[Mil18] Milovic, D. Z., On the 8-rank of narrow class groups of ℚ(√-4pp), ℚ(√-8pq), and ℚ(√8pq) , Int. J. Number Theory 14 (2018), 21652193.10.1142/S1793042118501300
[RW06] Romagny, M. and Wewers, S., Hurwitz spaces , in Groupes de Galois arithmétiques et différentiels, Séminaire et Congrès, vol. 13 (Société Mathématique de France, Paris, 2006), 313341.
[Smi16] Smith, A., Governing fields and statistics for 4-Selmer groups and 8-class groups, Preprint (2016), arXiv:1607.07860v1.
[Woo17] Wood, M. M., The distribution of sandpile groups of random graphs , J. Amer. Math. Soc. 30 (2017), 915958.10.1090/jams/866
[Yu97] Yu, J.-K., Toward a proof of the Cohen–Lenstra conjecture in the function field case, Preprint (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed