Skip to main content Accessibility help
×
Home

Big Galois representations and $p$ -adic $L$ -functions

  • Haruzo Hida (a1)

Abstract

Let $p\geqslant 5$ be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its Galois representation contains, up to finite error, a principal congruence subgroup ${\rm\Gamma}(L)$ of $\text{SL}_{2}(\mathbb{Z}_{p}[[T]])$ for a principal ideal $(L)\neq 0$ of $\mathbb{Z}_{p}[[T]]$ for the canonical ‘weight’ variable $t=1+T$ . If $L\notin {\rm\Lambda}^{\times }$ , the power series $L$ is proven to be a factor of the Kubota–Leopoldt $p$ -adic $L$ -function or of the square of the anticyclotomic Katz $p$ -adic $L$ -function or a power of $(t^{p^{m}}-1)$ .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Big Galois representations and $p$ -adic $L$ -functions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Big Galois representations and $p$ -adic $L$ -functions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Big Galois representations and $p$ -adic $L$ -functions
      Available formats
      ×

Copyright

References

Hide All
[Bou98]Bourbaki, N., Algèbre commutative (Hermann, Paris, 1961–1998).
[Bro82]Brown, K. S., Cohomology of groups, Graduate Texts in Mathematics, vol. 87 (Springer, New York, 1982).
[Car86]Carayol, H., Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 409468.
[Car94]Carayol, H., Formes modulaires et représentations galoisiennes à valeurs dans un anneau local compact, Contemp. Math. 165 (1994), 213237.
[Fis02]Fischman, A., On the image of Λ-adic Galois representations, Ann. Inst. Fourier (Grenoble) 52 (2002), 351378.
[Gel75]Gelbart, S. S., Automorphic forms on adele groups, Annals of Mathematics Studies, vol. 83 (Princeton University Press, Princeton, NJ, 1975).
[GV04]Ghate, E. and Vatsal, V., On the local behaviour of ordinary I-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), 21432162.
[Hid86a]Hida, H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 231273.
[Hid86b]Hida, H., Galois representations into GL2(ℤp[[X]]) attached to ordinary cusp forms, Invent. Math. 85 (1986), 545613.
[Hid86c]Hida, H., Hecke algebras for GL1 and GL2, Sém. de Théorie des Nombres, Paris 1984–85, Progr. Math. 63 (1986), 131163.
[Hid88]Hida, H., Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math. 110 (1988), 323382.
[Hid93]Hida, H., Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26 (Cambridge University Press, Cambridge, 1993).
[Hid00]Hida, H., Modular forms and galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 69 (Cambridge University Press, Cambridge, 2000).
[Hid09]Hida, H., Quadratic exercises in Iwasawa theory, Int. Math. Res. Notices IMRN 2009 (2009), 912952; doi:10.1093/imrn/rnn151.
[Hid10]Hida, H., The Iwasawa 𝜇-invariant of p-adic Hecke L-functions, Ann. of Math. (2) 172 (2010), 41137.
[Hid11a]Hida, H., Geometric modular forms and elliptic curves, second edition (World Scientific Publishing Co., Singapore, 2011).
[Hid11b]Hida, H., Hecke fields of analytic families of modular forms, J. Amer. Math. Soc. 24 (2011), 5180.
[Hid11c]Hida, H., Constancy of adjoint L-invariant, J. Number Theory 131 (2011), 13311346.
[Hid13a]Hida, H., Image of Λ-adic Galois representations modulo p, Invent. Math. 194 (2013), 140.
[Hid13b]Hida, H., Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication, J. Amer. Math. Soc. 26 (2013), 853877.
[HT93]Hida, H. and Tilouine, J., Anticyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), 189259.
[HT94]Hida, H. and Tilouine, J., On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994), 89147.
[Kat78]Katz, N. M., p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199297.
[Kut80]Kutzko, P., The Langlands conjecture for Gl 2 of a local field, Ann. of Math. (2) 112 (1980), 381412.
[Lip78]Lipman, J., Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), 151207.
[Mat86]Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8 (Cambridge University Press, New York, 1986).
[Maz89]Mazur, B., Deforming Galois representations, in Galois group over ℚ, Mathematical Sciences Research Institute Publications 16 (Springer, Berlin, 1989), 385437.
[MT90]Mazur, B. and Tilouine, J., Représentations galoisiennes, différentielles de Kähler et ‘conjectures principales’, Publ. Math. Inst. Hautes Études Sci. 71 (1990), 65103.
[MW86]Mazur, B. and Wiles, A., On p-adic analytic families of Galois representations, Compositio Math. 59 (1986), 231264.
[Miy89]Miyake, T., Modular forms, Springer Monographs in Mathematics (Springer, 1989).
[Mom81]Momose, F., On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 89109.
[Oht99]Ohta, M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Compositio Math. 115 (1999), 241301.
[Oht00]Ohta, M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000), 557583.
[Oht03]Ohta, M., Congruence modules related to Eisenstein series, Ann. Sci. Éc. Norm. Supér. (4) 36 (2003), 225269.
[Pin93]Pink, R., Classification of pro-p subgroups of SL2 over a p-adic ring, where p is an odd prime, Compositio Math. 88 (1993), 251264.
[Rib75]Ribet, K. A., On l-adic representations attached to modular forms, Invent. Math. 28 (1975), 245275.
[Rib76]Ribet, K. A., A modular construction of unramified p-extensions of ℚ(𝜇p), Invent. Math. 34 (1976), 151162.
[Rib85]Ribet, K. A., On l-adic representations attached to modular forms. II, Glasg. Math. J. 27 (1985), 185194.
[Rub88]Rubin, K., On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), 701713.
[Sch07]Schur, I., Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 29 (1907), 85137.
[Ser77]Serre, J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, vol. 42 (Springer, 1977).
[Shi71]Shimura, G., Introduction to the arithmetic theory of automorphic functions (Iwanami-Shoten and Princeton University Press, 1971).
[SW99]Skinner, C. M. and Wiles, A. J., Residually reducible representations and modular forms, Publ. Math. Inst. Hautes Études Sci. 89 (1999), 5126.
[Til89]Tilouine, J., Sur la conjecture principale anticyclotomique, Duke Math. J. 59 (1989), 629673.
[Vig89]Vignéras, M.-F., Représentations modulaires de GL(2, F) en caractéristique l, F corps p-adique, pl, Compositio Math. 72 (1989), 3366.
[Wei74]Weil, A., Exercices dyadiques, Invent. Math. 27 (1974), 122; Œuvres III, [1974e]).
[Zas99]Zassenhaus, H., The theory of groups (Courier Dover, 1999).
[Zha12]Zhao, B., Local indecomposability of Hilbert modular Galois representations, Ann. Inst. Fourier (Grenoble) to appear; arXiv:1204.4007v1 [math.NT].
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Big Galois representations and $p$ -adic $L$ -functions

  • Haruzo Hida (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.