Skip to main content Accessibility help

Automorphic products of singular weight

  • Nils R. Scheithauer (a1)


We prove some new structure results for automorphic products of singular weight. First, we give a simple characterisation of the Borcherds function $\unicode[STIX]{x1D6F7}_{12}$ . Second, we show that holomorphic automorphic products of singular weight on lattices of prime level exist only in small signatures and we derive an explicit bound. Finally, we give a complete classification of reflective automorphic products of singular weight on lattices of prime level.



Hide All
[Bor90] Borcherds, R. E., The monster Lie algebra , Adv. Math. 83 (1990), 3047.
[Bor95] Borcherds, R. E., Automorphic forms on O s+2, 2(R) and infinite products , Invent. Math. 120 (1995), 161213.
[Bor98] Borcherds, R. E., Automorphic forms with singularities on Grassmannians , Invent. Math. 132 (1998), 491562.
[Bor99] Borcherds, R. E., The Gross–Kohnen–Zagier theorem in higher dimensions , Duke Math. J. 97 (1999), 219233.
[Bor00] Borcherds, R. E., Reflection groups of Lorentzian lattices , Duke Math. J. 104 (2000), 319366.
[Bru02] Bruinier, J. H., Borcherds products on O (2, l) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780 (Springer, Berlin, 2002).
[Bru14] Bruinier, J. H., On the converse theorem for Borcherds products , J. Algebra 397 (2014), 315342.
[CS99] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften, vol. 290, third edition (Springer, New York, 1999).
[DHS15] Dittmann, M., Hagemeier, H. and Schwagenscheidt, M., Automorphic products of singular weight for simple lattices , Math. Z. 279 (2015), 585603.
[ES95] Eholzer, W. and Skoruppa, N.-P., Modular invariance and uniqueness of conformal characters , Comm. Math. Phys. 174 (1995), 117136.
[Fre12] Freitag, E., Dimension formulae for vector valued automorphic forms, Preprint (2012), available at∼t91.
[Gri91] Gritsenko, V. A., Fourier–Jacobi functions in n variables , J. Soviet Math. 53 (1991), 243252.
[GHS07] Gritsenko, V. A., Hulek, K. and Sankaran, G. K., The Kodaira dimension of the moduli of K3 surfaces , Invent. Math. 169 (2007), 519567.
[GN02] Gritsenko, V. A. and Nikulin, V. V., On the classification of Lorentzian Kac–Moody algebras , Russian Math. Surveys 57 (2002), 921979.
[HBJ94] Hirzebruch, F., Berger, T. and Jung, R., Manifolds and modular forms, Aspects of Mathematics, second edition (Friedrich Vieweg & Sohn, Braunschweig, 1994); with appendices by N.-P. Skoruppa and P. Baum.
[Iwa72] Iwasawa, K., Lectures on p-adic L-functions, Annals of Mathematics Studies (Princeton University Press, Princeton, NJ, 1972).
[Nik79] Nikulin, V. V., Integer symmetric bilinear forms and some of their geometric applications , Math. USSR Izv. 14 (1979), 103167.
[Sch00] Scheithauer, N. R., The fake monster superalgebra , Adv. Math. 151 (2000), 226269.
[Sch01] Scheithauer, N. R., Twisting the fake monster superalgebra , Adv. Math. 164 (2001), 325348.
[Sch04] Scheithauer, N. R., Generalised Kac–Moody algebras, automorphic forms and Conway’s group I , Adv. Math. 183 (2004), 240270.
[Sch06] Scheithauer, N. R., On the classification of automorphic products and generalized Kac–Moody algebras , Invent. Math. 164 (2006), 641678.
[Sch09] Scheithauer, N. R., The Weil representation of SL2(ℤ) and some applications , Int. Math. Res. Not. IMRN 2009 (2009), 14881545.
[Sch15] Scheithauer, N. R., Some constructions of modular forms for the Weil representation of SL2(ℤ) , Nagoya Math. J. 220 (2015), 143.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Automorphic products of singular weight

  • Nils R. Scheithauer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed