Skip to main content Accessibility help

Arithmetic properties of Apéry-like numbers

  • É. Delaygue (a1)


We provide lower bounds for $p$ -adic valuations of multisums of factorial ratios which satisfy an Apéry-like recurrence relation: these include Apéry, Domb and Franel numbers, the numbers of abelian squares over a finite alphabet, and constant terms of powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures on the $p$ -adic valuation of Apéry numbers. Furthermore, we give an effective criterion for a sequence of factorial ratios to satisfy the $p$ -Lucas property for almost all primes $p$ .



Hide All
[AZ06] Almkvist, G. and Zudilin, W., Differential equations, mirror maps and zeta values , in Mirror symmetry, Vol. V, AMS/IP Studies in Advanced Mathematics, vol. 38 (American Mathematical Society, Providence, RI, 2006), 481515.
[Apé79] Apéry, R., Irrationalité de 𝜁(2) et 𝜁(3) , Astérisque 61 (1979), 1113.
[Beu85] Beukers, F., Some congruences for the Apéry numbers , J. Number Theory 21 (1985), 141155.
[Beu86] Beukers, F., Congruence properties of coefficients of solutions of Picard–Fuchs equations , Groupe de travail d’analyse ultramétrique 14 (1986–1987), 16; Exposé 11.
[Beu87] Beukers, F., Another congruence for the Apéry numbers , J. Number Theory 25 (1987), 201210.
[BS85] Beukers, F. and Stienstra, J., On the Picard–Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces , Math. Ann. 271 (1985), 269304.
[BNSW11] Borwein, J. M., Nuyens, D., Straub, A. and Wan, J., Some arithmetic properties of short random walk integrals , Ramanujan J. 26 (2011), 109132.
[Cal98] Calkin, N. J., Factors of sums of powers of binomial coefficients , Acta Arith. 86 (1998), 1726.
[Cat85] Catalan, E., Sur un développement de l’intégrale elliptique de première espèce et sur une suite de nombres entiers , Mém. Acad. R. Sci. Lett. Beaux-Arts Belg. 46 (1885), 124.
[CCC80] Chowla, S., Cowles, J. and Cowles, M., Congruence properties of Apéry numbers , J. Number Theory 12 (1980), 188190.
[CG96] Conway, J. H. and Guy, R. K., The book of numbers (Springer, New York, 1996), 106.
[Cos88] Coster, M. J., Congruence properties of coefficients of certain algebraic power series , Compositio Math. 68 (1988), 4157.
[Del13] Delaygue, E., A criterion for the integrality of the Taylor coefficients of mirror maps in several variables , Adv. Math. 234 (2013), 414452.
[DRR17] Delaygue, E., Rivoal, T. and Roques, J., On Dwork’s p-adic formal congruences theorem and hypergeometric mirror maps , Mem. Amer. Math. Soc. 246 (2017), 100 pp.
[DS06] Deutsch, E. and Sagan, B. E., Congruences for Catalan and Motzkin numbers and related sequences , J. Number Theory 117 (2006), 191215.
[Fra94] Franel, J., On a question of Laisant , L’intermédiaire des Mathématiciens 1 (1894), 4547.
[Fra95] Franel, J., On a question of J. Franel , L’intermédiaire des Mathématiciens 2 (1895), 3335.
[Ges82] Gessel, I., Some congruences for Apéry numbers , J. Number Theory 14 (1982), 362368.
[Kum52] Kummer, E., Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen , J. reine angew. Math. 44 (1852), 93146.
[Lan00] Landau, E., Sur les conditions de divisibilité d’un produit de factorielles par un autre , Nouv. Ann. Math. (3) 19 (1900), 344362.
[Luc78] Lucas, E., Sur les congruences des nombres eulériens et les coefficients différentiels des fonctions trigonométriques suivant un module premier , Bull. Soc. Math. France 6 (1878), 4954.
[MV16] Mellit, A. and Vlasenko, M., Dwork’s congruences for the constant terms of powers of a Laurent polynomial , Int. J. Number Theory 12 (2016), 313321.
[Mim83] Mimura, Y., Congruence properties of Apéry numbers , J. Number Theory 16 (1983), 138146.
[OEIS13] The On-line encyclopedia of integer sequences, published electronically at (2013).
[RS09] Richmond, L. B. and Shallit, J., Counting abelian squares , Electron. J. Combin. 16 (2009), Research paper 72, 9 pp.
[SvS15] Samol, K. and van Straten, D., Dwork congruences and reflexive polytopes , Ann. Math. Québec 39 (2015), 185203.
[Zag09] Zagier, D., Integral solutions of Apéry-like recurrence equations , in Groups and symmetries, CRM Proceedings and Lecture Notes, vol. 47 (American Mathematical Society, Providence, RI, 2009), 349366.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed