Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T16:01:06.604Z Has data issue: false hasContentIssue false

Rigidity of free product von Neumann algebras

Published online by Cambridge University Press:  17 November 2016

Cyril Houdayer
Affiliation:
Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France email cyril.houdayer@math.u-psud.fr
Yoshimichi Ueda
Affiliation:
Graduate School of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan email ueda@math.kyushu-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $I$ be any nonempty set and let $(M_{i},\unicode[STIX]{x1D711}_{i})_{i\in I}$ be any family of nonamenable factors, endowed with arbitrary faithful normal states, that belong to a large class ${\mathcal{C}}_{\text{anti}\text{-}\text{free}}$ of (possibly type $\text{III}$) von Neumann algebras including all nonprime factors, all nonfull factors and all factors possessing Cartan subalgebras. For the free product $(M,\unicode[STIX]{x1D711})=\ast _{i\in I}(M_{i},\unicode[STIX]{x1D711}_{i})$, we show that the free product von Neumann algebra $M$ retains the cardinality $|I|$ and each nonamenable factor $M_{i}$ up to stably inner conjugacy, after permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity results for free product type $\text{II}_{1}$ factors and is new for free product type $\text{III}$ factors. It moreover provides new rigidity phenomena for type $\text{III}$ factors.

Type
Research Article
Copyright
© The Authors 2016 

References

Anantharaman-Delaroche, C., Amenable correspondences and approximation properties for von Neumann algebras , Pacific J. Math. 171 (1995), 309341.Google Scholar
Ando, H. and Haagerup, U., Ultraproducts of von Neumann algebras , J. Funct. Anal. 266 (2014), 68426913.Google Scholar
Asher, J., A Kurosh-type theorem for type III factors , Proc. Amer. Math. Soc. 137 (2009), 41094116.CrossRefGoogle Scholar
Boutonnet, R., Houdayer, C. and Raum, S., Amalgamated free product type III factors with at most one Cartan subalgebra , Compos. Math. 150 (2014), 143174.Google Scholar
Brown, N. P. and Ozawa, N., C -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88 (American Mathematical Society, Providence, RI, 2008).Google Scholar
Chandler, B. and Magnus, W., The history of combinatorial group theory. A case study in the history of ideas, Studies in the History of Mathematics and Physical Sciences, vol. 9 (Springer, New York, 1982).Google Scholar
Chifan, I. and Houdayer, C., Bass–Serre rigidity results in von Neumann algebras , Duke Math. J. 153 (2010), 2354.Google Scholar
Chifan, I. and Sinclair, T., On the structural theory of II 1 factors of negatively curved groups , Ann. Sci. Éc. Norm. Supér. 46 (2013), 133.CrossRefGoogle Scholar
Connes, A., Une classification des facteurs de type III , Ann. Sci. Éc. Norm. Supér. 6 (1973), 133252.Google Scholar
Connes, A., Almost periodic states and factors of type III 1 , J. Funct. Anal. 16 (1974), 415445.Google Scholar
Connes, A., Classification of injective factors. Cases II 1 , II , III 𝜆 , 𝜆≠1 , Ann. of Math. (2) 74 (1976), 73115.Google Scholar
Connes, A. and Jones, V. F. R., Property T for von Neumann algebras , Bull. Lond. Math. Soc. 17 (1985), 5762.Google Scholar
Connes, A. and Takesaki, M., The flow of weights of factors of type III , Tôhoku Math. J. 29 (1977), 473575.CrossRefGoogle Scholar
Cowling, M. and Haagerup, U., Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one , Invent. Math. 96 (1989), 507549.Google Scholar
Gao, M. and Junge, M., Examples of prime von Neumann algebras , Int. Math. Res. Not. IMRN 2007 (2007), doi:10.1093/imrn/rnm042.Google Scholar
Ge, L., On maximal injective subalgebras of factors , Adv. Math. 118 (1996), 3470.Google Scholar
Haagerup, U., Connes’ bicentralizer problem and uniqueness of the injective factor of type III 1 , Acta Math. 69 (1986), 95148.Google Scholar
Haagerup, U. and Størmer, E., Equivalence of normal states on von Neumann algebras and the flow of weights , Adv. Math. 83 (1990), 180262.Google Scholar
Houdayer, C., Sur la classification de certaines algèbres de von Neumann, PhD thesis, Université Paris VII (2007).Google Scholar
Houdayer, C. and Isono, Y., Unique prime factorization and bicentralizer problem for a class of type III factors , Adv. Math. 305 (2017), 402455.Google Scholar
Houdayer, C. and Raum, S., Asymptotic structure of free Araki–Woods factors , Math. Ann. 363 (2015), 237267.Google Scholar
Houdayer, C. and Ueda, Y., Asymptotic structure of free product von Neumann algebras , Math. Proc. Cambridge Philos. Soc. 161 (2016), 489516.Google Scholar
Houdayer, C. and Vaes, S., Type III factors with unique Cartan decomposition , J. Math. Pures Appl. 100 (2013), 564590.Google Scholar
Ioana, A., Cartan subalgebras of amalgamated free product II 1 factors , Ann. Sci. Éc. Norm. Supér. 48 (2015), 71130.Google Scholar
Ioana, A., Peterson, J. and Popa, S., Amalgamated free products of w-rigid factors and calculation of their symmetry groups , Acta Math. 200 (2008), 85153.CrossRefGoogle Scholar
Izumi, M., Longo, R. and Popa, S., A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras , J. Funct. Anal. 155 (1998), 2563.Google Scholar
Kadison, R. V., Diagonalizing matrices , Amer. J. Math. 106 (1984), 14511468.Google Scholar
Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras, Vol. II, Advanced theory, Graduate Studies in Mathematics, vol. 16 (American Mathematical Society, Providence, RI, 1997); pp. i–xxii and 399–1074, corrected reprint of the 1986 original.Google Scholar
Ocneanu, A., Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138 (Springer, Berlin, 1985).Google Scholar
Ozawa, N., Solid von Neumann algebras , Acta Math. 192 (2004), 111117.Google Scholar
Ozawa, N., A Kurosh type theorem for type II 1 factors , Int. Math. Res. Not. IMRN 2006 (2006), doi:10.1155/IMRN/2006/97560.Google Scholar
Ozawa, N. and Popa, S., Some prime factorization results for type II 1 factors , Invent. Math. 156 (2004), 223234.Google Scholar
Ozawa, N. and Popa, S., On a class of II 1 factors with at most one Cartan subalgebra , Ann. of Math. (2) 172 (2010), 713749.Google Scholar
Peterson, J., L2 -rigidity in von Neumann algebras , Invent. Math. 175 (2009), 417433.Google Scholar
Popa, S., On a problem of R.V. Kadison on maximal abelian ∗-subalgebras in factors , Invent. Math. 65 (1981), 269281.Google Scholar
Popa, S., Maximal injective subalgebras in factors associated with free groups , Adv. Math. 50 (1983), 2748.Google Scholar
Popa, S., Markov traces on universal Jones algebras and subfactors of finite index , Invent. Math. 111 (1993), 375405.Google Scholar
Popa, S., On a class of type II 1 factors with Betti numbers invariants , Ann. of Math. (2) 163 (2006), 809899.Google Scholar
Popa, S., Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups I , Invent. Math. 165 (2006), 369408.Google Scholar
Popa, S., On the superrigidity of malleable actions with spectral gap , J. Amer. Math. Soc. 21 (2008), 9811000.Google Scholar
Popa, S. and Vaes, S., Unique Cartan decomposition for II 1 factors arising from arbitrary actions of free groups , Acta Math. 212 (2014), 141198.CrossRefGoogle Scholar
Takesaki, M., Theory of operator algebras II , in Operator algebras and non-commutative geometry, Vol. 6, Encyclopaedia of Mathematical Sciences, vol. 125 (Springer, Berlin, 2003).Google Scholar
Tomiyama, J., On some types of maximal abelian subalgebras , J. Funct. Anal. 10 (1972), 373386.Google Scholar
Ueda, Y., Amalgamated free products over Cartan subalgebra , Pacific J. Math. 191 (1999), 359392.Google Scholar
Ueda, Y., Remarks on free products with respect to non-tracial states , Math. Scand. 88 (2001), 111125.Google Scholar
Ueda, Y., Factoriality, type classification and fullness for free product von Neumann algebras , Adv. Math. 228 (2011), 26472671.CrossRefGoogle Scholar
Ueda, Y., Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting , J. Lond. Math. Soc. (2) 88 (2013), 2548.Google Scholar
Vaes, S., Explicit computations of all finite index bimodules for a family of II 1 factors , Ann. Sci. Éc. Norm. Supér. 41 (2008), 743788.Google Scholar
Vaes, S., Normalizers inside amalgamated free product von Neumann algebras , Publ. Res. Inst. Math. Sci. 50 (2014), 695721.Google Scholar
Vaes, S. and Vergnioux, R., The boundary of universal discrete quantum groups, exactness, and factoriality , Duke Math. J. 140 (2007), 3584.Google Scholar
Voiculescu, D.-V., Symmetries of some reduced free product C -algebras , in Operator algebras and their connections with topology and ergodic theory, Lecture Notes in Mathematics, vol. 1132 (Springer, 1985), 556588.Google Scholar
Voiculescu, D.-V., Dykema, K. J. and Nica, A., Free random variables, CRM Monograph Series, vol. 1 (American Mathematical Society, Providence, RI, 1992).Google Scholar