Skip to main content Accessibility help
×
Home

Evidence supporting exercise-induced pulmonary haemorrhage in racing greyhounds

  • T S Epp (a1), B Szladovits (a1), A Buchannan (a1), L Gates (a1), P McDonough (a2), D J Padilla (a1), J Smart (a3), H H Erickson (a1) and D C Poole (a1)...

Abstract

Exercise-induced pulmonary haemorrhage (EIPH) is a major health concern in performance horses, but the presence and severity of this condition in racing greyhounds has received little attention. While equids and greyhounds share many physiological attributes, there are important structural and functional differences that may help protect greyhounds from EIPH. We tested the hypothesis that greyhounds performing a simulated 503 m race would experience EIPH and that the time course of recovery would be similar to the horse, even though the severity or relative extent as indexed by the concentration of red blood cells [RBCs] in bronchoalveolar lavage (BAL) fluid would be lower in comparison with that demonstrated previously in horses. Greyhound dogs (n = 6) raced on two occasions (separated by 7 weeks) and BAL was performed 1 week before, 2 h after and each week for 4 weeks following each race to examine the [RBC], concentration of white blood cells [WBCs], WBC differentials and haemosiderophages in the lungs. Racing increased 10 min post-exercise venous blood [lactate] to 18.6 ± 0.4 mmol l− 1. No epistaxis or pink froth was observed at the nose or mouth of any of the dogs. The [RBC] in the BAL fluid was increased significantly 2 h post-race (baseline = 109.6 ± 11.7 × 103; post-race = 292.3 ± 69.9 × 103 RBC ml− 1 BAL fluid, P < 0.05) and returned to baseline 1 week post-race (149.2 ± 46.2 × 103 RBC ml− 1 BAL fluid, P>0.05 versus baseline). The number of haemosiderophages was not different for any of the measurement periods. The [WBC] in the BAL fluid decreased from baseline and race values at 2, 3 and 4 weeks post-exercise (all P < 0.05). Alveolar neutrophil concentrations were also decreased from baseline and immediate post-race values for 4 weeks post-race. The increased [RBC] in the BAL fluid post-exercise is consistent with the presence of EIPH in these greyhounds. However, the relative extent of EIPH in greyhounds (as indexed by [RBC] in the BAL fluid), as compared with that in the horse, was mild, and the lack of elevation of WBC suggests that, unlike their equine counterparts, inflammatory airway disease was absent.

Copyright

Corresponding author

*Corresponding author: tepp@vet.k-state.edu

References

Hide All
1McKane, SA, Canfield, PJ and Rose, RJ (1993). Equine bronchoalveolar lavage cytology: survey of Thoroughbred racehorses in training. Australian Veterinary Journal 70: 401404.
2Meyer, TS, Fedde, MR, Gaughan, EM, Langsetmo, I and Erickson, HH (1998). Quantification of exercise-induced pulmonary haemorrhage with bronchoalveolar lavage. Equine Veterinary Journal 30: 284288.
3Langsetmo, I, Fedde, MR, Meyer, TS and Erickson, HH (2000). Relationship of pulmonary arterial pressure to pulmonary hemorrhage in exercising horses. Equine Veterinary Journal 32: 379384.
4Birks, EK, Shuler, KM, Soma, LR, Martin, BB, Marconato, L, Del Piero, F, Teleis, DC, Schar, D, Hessinger, AE and Uboh, CE (2002). EIPH: postrace endoscopic evaluation of Standardbreds and Thoroughbreds. Equine Veterinary Journal Supplement 34: 375378.
5Akbar, SJ, Derksen, FJ, Billah, AM and Werney, U (1994). Exercise induced pulmonary hemorrhage in racing camels. Veterinary Record 135: 624625.
6Hopkins, SR, Schoene, RB, Henderson, WR, Spragg, RG, Martin, TR and West, JB (1997). Intense exercise impairs the integrity of the pulmonary blood–gas barrier in elite athletes. Journal of Applied Physiology 79: 908917.
7Hopkins, SR (2005). The lung at maximal exercise: insights from comparative physiology. Clinics in Chest Medicine 26: 459468.
8King, RR, Raskin, RE and Rosbolt, JP (1990). Exercise-induced pulmonary hemorrhage in the racing greyhound dog. Journal of Veterinary Internal Medicine 4: 130.
9King, RR and Raskin, RE (1991). Intrabronchial hemorrhage in Greyhound dogs after racing. 7th International Racing Greyhound Symposium Orlando, FL, in conjunction with Eastern States Veterinary Conference, 18–21.
10Robertson, JB (1913). Biological search-light on racehorse breeding: VI. The heredity of blood-vessel breaking in the Thoroughbred. The Bloodstock Breeders Review 2: 265281.
11Erickson, BK, Erickson, HH and Coffman, JR (1990). Pulmonary artery, aortic, and oesophageal pressure changes during high intensity treadmill exercise in the horse: a possible relation to exercise-induced pulmonary haemorrhage. Equine Veterinary Journal Supplement 9: 4752.
12West, JB, Mathieu-Costello, O, Jones, JH, Birks, EK, Logemann, RB, Pascoe, JR and Tyler, WS (1993). Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage. Journal of Applied Physiology 75: 10971109.
13Jackson, JA, Ducharme, NG, Hackett, RP, Rehder, RS, Ainsworth, DM, Shannon, KJ, Erickson, BK, Erb, HN, Jansson, N, Soderholm, LV and Thorson, LM (1997). Effects of airway obstruction on transmural pulmonary artery pressure in exercising horses. American Journal of Veterinary Research 58: 897903.
14Hackett, RP, Ducharme, NG, Ainsworth, DM, Erickson, BK, Hollis, NE, Soderholm, LV and Thorson, LM (1999). Effects of extrathoracic airway obstruction on intrathoracic pressure and pulmonary artery pressure in exercising horses. American Journal of Veterinary Research 60: 485494.
15Ducharme, NG, Hackett, RP, Gleed, RD, Ainsworth, DM, Erb, HN, Mitchell, LM and Soderholm, LV (1999). Pulmonary capillary pressure in horses undergoing alteration of pleural pressure by imposition of various upper airway resistive loads. Equine Veterinary Journal Supplement 30: 2733.
16Cook, WR, Williams, RM, Kirker-Head, CA and Verbridge, DJ (1988). Upper airway obstruction (partial asphyxia) as the possible cause of exercise-induced pulmonary hemorrhage in the horse: an hypothesis. Journal of Equine Veterinary Science 8: 1126.
17Poole, DC, Kindig, CA, Fenton, G, Ferguson, L, Rush, BR and Erickson, HH (2000). Effects of external nasal support on pulmonary gas exchange and EIPH in the horse. Journal of Equine Veterinary Science 20: 579585.
18Geor, RJ, Ommundson, L, Fenton, G and Pagan, JD (2001). Effects of an external nasal strip and frusemide on pulmonary haemorrhage in Thoroughbreds following high-intensity exercise. Equine Veterinary Journal 33: 577584.
19Kindig, CA, McDonough, P, Fenton, G, Poole, DC and Erickson, HH (2001). Efficacy of nasal strip and furosemide in mitigating EIPH in Thoroughbred horses. Journal of Applied Physiology 91: 13961400.
20Erickson, HH, Kindig, CA and Poole, DC (2001). Role of the airways in exercise-induced pulmonary haemorrhage. Equine Veterinary Journal 33: 537539.
21Holcombe, SJ, Breney, C, Cornelisse, CJ, Derksen, FJ and Robinson, NE (2002). Effect of commercially available nasal strips on airway resistance in exercising horses. American Journal of Veterinary Research 63: 11011105.
22McDonough, P, Kindig, CA, Hildreth, TS, Padilla, DJ, Behnke, BJ, Erickson, HH and Poole, DC (2004). Effect of furosemide and the equine nasal strip on EIPH and time to fatigue in running Thoroughbred horses. Equine and Comparative Exercise Physiology 1: 177184.
23Hildreth, TS, McDonough, P, Padilla, DJ, Behnke, BJ, Poole, DC and Erickson, HH (2003). Is immunotherapy effective in reducing exercise-induced pulmonary haemorrhage (EIPH). The FASEB Journal 17: A939.
24McKane, SA and Slocombe, RF (1999). Sequential changes in bronchoalveolar cytology after autologous blood inoculation. Equine Veterinary Journal 30: 126130.
25O'Callaghan, MW, Pasco, JR and Tyler, WS (1987). Exercise-induced pulmonary hemorrhage in the horse: results of a detailed clinical, post mortem and imaging study. V. Microscopic observations. Equine Veterinary Journal 19: 411418.
26O'Callaghan, MW, Pascoe, JR and Tyler, WS (1987). Exercise-induced pulmonary hemorrhage in the horse: results of a detailed clinical, post mortem and imaging study. VIII. Conclusions and implications. Equine Veterinary Journal 19: 428434.
27McKane, SA and Slocombe, RF (2002). Alveolar fibrosis and changes in equine lung morphometry in response to intrapulmonary blood. Equine Veterinary Journal Supplement 34: 451458.
28Newton, JR and Wood, JLN (2002). Evidence of an association between inflammatory airway disease and EIPH in young Thoroughbreds during training. Equine Veterinary Journal Supplement 34: 417424.
29Robinson, NE and Derksen, FJ (1980). Small airway obstruction as a cause of exercise-associated pulmonary hemorrhage: a hypothesis. Proceedings of the American Association of Equine Practitioners 26: 421430.
30Schroter, RC, Marlin, DJ and Denny, E (1998). Exercise-induced pulmonary hemorrhage (EIPH) in horses results from locomotory impact induced trauma – a novel, unifying concept. Equine Veterinary Journal 30: 186192.
31Schroter, RC, Leeming, A, Denny, E, Bharath, A and Marlin, DJ (1999). Modeling impact-initiated wave transmission through lung parenchyma in relation to the aetiology of exercise-induced pulmonary haemorrhage. Equine Veterinary Journal Supplement 30: 3438.
32Newton, JR, Rogers, K, Marlin, DJ, Wood, JL and Williams, RB (2005). Risk factors for epistaxis on British racecourses: evidence for locomotory impact-trauma contributing to the aetiology of exercise-induced pulmonary hemorrhage. Equine Veterinary Journal 37: 402411.
33Snow, DH and Harris, RC (1985). Thoroughbreds and Greyhounds: biochemical adaptations in creatures of nature and of man. In: Berlin-Heidelberg, GR (ed.) Circulation, Respiration and Metabolism. Cambridge, NY: Springer-Verlag, pp. 227239.
34Nold, JL, Peterson, LJ and Fedde, MR (1991). Physiological changes in the running greyhound (Canis domesticus): influence of race length. Comparative Biochemistry and Physiology 100A: 623627.
35Poole, DC and Erickson, HH (2004). Heart and vessels: function during exercise and response to training. In: Hinchcliff, KW, Kaneps, AJ and Geor, RJ (eds) Equine Sports Medicine and Surgery – Basic and Clinical Sciences of the Equine Athlete. New York: WB Saunders, pp. 699727.
36Staaden, RV (1998). Section IX. Exercise and training – The exercise physiology of sporting dogs. In: Bloomberg, MS, Dee, JF and Taylor, RA (eds) Canine Sports Medicine and Surgery. Philadelphia, PA: WB Saunders, pp. 357363.
37Rose, RJ and Bloomberg, MS (1989). Response to sprint exercise in the greyhound: effects on hematology, serum biochemistry and muscle metabolites. Research in Veterinary Science 47: 212218.
38Neuhaus, D, Fedde, MR and Gaehtgens, P (1992). Changes in haemorheology in the racing greyhound as related to oxygen delivery. European Journal of Applied Physiology 65: 278285.
39Mathieu-Costello, O, Willford, DC, Fu, Z, Garden, RM and West, JB (1995). Pulmonary capillaries are more resistant to stress failure in dogs than in rabbits. Journal of Applied Physiology 79: 908917.
40Birks, EK, Mathieu-Costello, O, Fu, Z, Tyler, WS and West, JB (1994). Comparative aspects of the strength of pulmonary capillaries in rabbit, dog, and horse. Respiration Physiology 97: 235246.
41Pieschl, RL, Toll, PW, Erickson, BK and West, JB (1992). Pulmonary artery pressure in the exercising Greyhound. The FASEB Journal 6: A2048.
42Ainsworth, DM, Smith, CA, Eicker, SW, Ducharme, NG, Henderson, KS, Snedden, K and Dempsey, JA (1997). Pulmonary–locomotory interactions in exercising dogs and horses. Respiration Physiology 110: 287294.
43Saibene, F, Mognomi, P, Aguggini, G and Clement, MG (1981). Work of breathing in dog during exercise. Journal of Applied Physiology 50: 10871092.
44Jayaweera, AR and Ehrlich, W (1988). Efficiency of work of inspiratory muscles in standing and in exercising dogs. Chest 94: 10801085.
45Kindig, CA, McDonough, P, Finley, MR, Behnke, BJ, Richardson, TE, Marlin, DJ, Erickson, HH and Poole, DC (2001). NO inhalation reduces pulmonary arterial pressure but not hemorrhage in maximally exercising horses. Journal of Applied Physiology 91: 26742678.
46Kindig, CA, Ramsel, C, McDonough, P, Poole, DC and Erickson, HH (2003). Inclined running increases pulmonary haemorrhage in the Thoroughbred horse. Equine Veterinary Journal 35: 581585.
47Epp, TS, McDonough, P, Padilla, DJ, Cox, JH, Poole, DC and Erickson, HH (2005). The effect of herbal supplementation on the severity of exercise-induced pulmonary haemorrhage. Equine and Comparative Exercise Physiology 2: 1725.
48Epp, TS, McDonough, P, Padilla, DJ, Gentile, JM, Edwards, KL, Erickson, HH and Poole, DC (2006). Exercise-induced pulmonary haemorrhage during submaximal exercise. Equine Veterinary Journal Supplement 37: 502507.
49Valdez, SC, Nieto, JE, Spier, SJ, Owens, SD, Beldomenico, P and Snyder, JR (2004). Effect of an external nasal dilator strip on cytologic characteristics of bronchoalveolar lavage fluid in Thoroughbred racehorses. Journal of the American Veterinary Medical Association 224: 558561.
50Hawkins, EC and Berry, CR (1999). Use of a modified stomach tube for bronchoalveolar lavage in dogs. Journal of the American Veterinary Medical Association 11: 16351639.
51Fogarty, U (1990). Evaluation of a bronchoalveolar lavage technique. Equine Veterinary Journal 22: 174176.
52Fogarty, U and Buckley, T (1991). Bronchoalveolar lavage findings in horses with exercise intolerance. Equine Veterinary Journal 23: 434437.
53Mason, DK, Collins, EA and Watkins, KL (1983). Respiratory system. In: Snow, DH, Persson, SGB and Rose, RJ (eds) Equine Exercise Physiology. Cambridge, UK: Granta Editions, pp. 5763.
54Huston, LJ, Bayly, WM, Liggitt, HD and Magnuson, NS (1987). Alveolar macrophage function in Thoroughbreds after strenuous exercise. In: Gillespie, JR and Robinson, NE (eds) Equine Exercise Physiology 2. Davis, CA: ICEEP Publications, pp. 243252.
55Commins, LM, Loegering, DJ and Gudewicz, PW (1990). Effect of phagocytosis of erythrocytes and erythrocyte ghosts on macrophage phagocytic function and hydrogen peroxide production. Inflammation 14: 705716.
56Wong, CW, Smith, SE, Thong, YH, Opdebeedk, JP and Thornton, JR (1992). Effects of exercise on various immune functions in horses. American Journal of Veterinary Research 53: 14141417.
57Hand, WL and King-Thompson, NL (1983). Effect of erythrocyte ingestion on macrophage antibacterial function. Infection and Immunology 40: 917923.
58Step, DL, Freeman, KP, Gleed, RD and Hackett, RP (1991). Cytologic and endoscopic findings after intrapulmonary blood inoculation in horses. Equine Veterinary Science 11: 340345.
59Raidal, SL, Love, DN, Bailey, GD and Rose, RJ (2000). The effect of high intensity exercise on the functional capacity of equine pulmonary alveolar macrophages and BAL-derived lymphocytes. Research in Veterinary Science 68: 249253.
60Laegreid, WW, Huston, LJ, Basaraba, RJ and Crisman, MV (1988). The effects of stress on alveolar macrophage function in the horse: an overview. Equine Practice 10: 916.
61Custer, G, Balcerzak, S and Rinehart, J (1982). Human macrophage hemoglobin–iron metabolism in vitro. American Journal of Hematology 13: 2336.
62Mateos, F, Brock, JH and Pères-Arellano, JL (1998). Iron metabolism in the lower respiratory tract. Thorax 53: 594600.
63Pinsker, KL, Norin, AJ, Kamholz, SL, Montefusco, C, Schreiber, K, Hagstrom, JWC and Veith, FJ (1980). Cell content in repetitive canine bronchoalveolar lavage. The International Academy of Cytology Acta Cytologica 24: 558583.
64Rebar, AH, DeNicola, DB and Muggenburg, BA (1980). Bronchopulmonary lavage cytology in the dog: normal findings. Veterinary Pathology 17: 294304.
65Hawkins, EC, DeNicola, DB and Kuehn, NF (1990). Bronchoalveolar lavage in the evaluation of pulmonary disease in the dog and cat. Journal of Veterinary Internal Medicine 4: 267274.
66Mayer, P, Laber, G and Walzl, H (1990). Bronchoalveolar lavage in dogs; analysis of proteins and respiratory cells. Journal of Veterinary Medicine 37: 392399.
67Vail, DM, Mahler, PA and Soergel, SA (1995). Differential cell analysis and phenotypic subtyping of lymphocytes in bronchoalveolar lavage fluid from clinically normal dogs. American Journal of Veterinary Research 56: 282285.
68McCauley, M, Atwell, RB, Sutton, RH and Lumsden, JS (1998). Unguided bronchoalveolar lavage techniques and residual effects in dogs. Australian Veterinary Journal 76: 161165.
69Rha, JY and Mahony, O (1999). Bronchoscopy in small animal medicine: indications, instrumentation, and techniques. Clinical Techniques in Small Animal Practice 14: 207212.
70McCullough, S and Brinson, J (1999). Collection and interpretation of respiratory cytology. Clinical Techniques in Small Animal Practice 14: 220226.
71Rajamaki, MM, Jarvinen, AK, Saari, SAM and Maisi, PS (2001). Effect of repetitive bronchoalveolar lavage on cytologic findings in healthy dogs. American Journal of Veterinary Research 62: 1316.
72Andreasen, CB (2003). Bronchoalveolar lavage. In: Cowell, RL (ed.) The Veterinary Clinics of North America – Small Animal Practice Cytology II. vol. 33. New York: WB Saunders, pp. 6988.
73Kwak, SH, Choi, JI and Park, JT (2004). Effects of propofol on endotoxin-induced acute lung injury in rabbit. Journal of Korean Medical Science 19: 5561.
74Takao, Y, Mikawa, K, Nishina, K and Obara, H (2005). Attenuation of acute lung injury with propofol in endotoxemia. Anesthesia and Analgesia 100: 810816.
75Davis, MS, McKiernan, B, McCullough, S, Nelson, S and Mandsagr, RE (2002). Racing Alaskan sled dogs as a model of “Ski Asthma”. American Journal of Respiratory Critical Care Medicine 166: 878882.
76Olsen, SC, Coyne, CP, Lowe, BS, Pelletier, N, Raub, EM and Erickson, HH (1992). Influence of furosemide on hemodynamic responses during exercise in horses. American Journal of Veterinary Research 53: 742747.
77Fedde, MR and Erickson, HH (1998). Increase in blood viscosity in the sprinting horse: can it account for the high pulmonary arterial pressure? Equine Veterinary Journal 30: 329334.
78Schneider, HP, Truex, RC and Knowles, JO (1964). Comparative observations of the hearts of Mongrel and Greyhound dogs. Anatomical Record 149: 173180.
79Steel, JD, Taylor, RI, Davis, PE, Stewart, GA and Salmon, PW (1976). Relationships between heart score, heart weight, and body weight in greyhound dogs. Australian Veterinary Journal 52: 561564.
80Staaden, R (1980). Cardiovascular System of the racing dog. In: Kirk, RW (ed.) Current Veterinary Therapy VII, Small Animal Practice. Philadelphia, PA: WB Saunders Company, pp. 349.
81Schoning, P, Erickson, HH and Milliken, GA (1995). Body weight, heart weight, and heart-to-body weight ratio in Greyhounds. American Journal of Veterinary Research 56: 420422.
82Rose, RJ, Hodgson, DR, Kelso, TB, McCutcheon, LJ, Reid, TA, Bayly, WM and Gollnick, PD (1988). Maximum O2 uptake, O2 debt and deficit, and muscle metabolites in Thoroughbred horses. Journal of Applied Physiology 64: 781788.
83Evans, DL and Rose, RJ (1988). Determination and repeatability of maximum oxygen uptake and other cardiorespiratory measurements in the exercising horse. Equine Veterinary Journal 20: 9498.
84Birks, EK, Mathieu-Costello, O, Fu, Z, Tyler, WS and West, JB (1997). Very high pressures are required to cause stress failure of pulmonary capillaries in Thoroughbred racehorses. Journal of Applied Physiology 82: 15841592.
85Weibel, ER, Marques, LB, Constantinopol, M, Duffey, F, Gehr, P and Taylor, CR (1987). Adaptive variation in the mammalian respiratory system in relation to energetic demand: VI. The pulmonary gas exchanger. Respiration Physiology 69: 81100.
86Marlin, DJ, Schroter, RC, Cashman, PMM, Deaton, CM, Poole, DC, Kindig, CA, McDonough, P and Erickson, HH (2002). Movements of thoracic and abdominal compartments during ventilation at rest and during exercise. Equine Veterinary Journal Supplement 34: 383390.
87Elliot, AR, Fu, Z, Tsukimoto, K, Prediletto, R, Mathieu-Costello, O and West, JB (1992). Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. Journal of Applied Physiology 73: 11501158.
88Hillidge, CJ, Lane, TJ, Johnson, EL and Asquith, RL (1984). Preliminary investigations of exercise-induced pulmonary hemorrhage in racing Quarter Horses. Journal of Equine Veterinary Science 4: 2123.
89Ghio, AJ, Ghio, C and Bassett, M (2006). Exercise-induced pulmonary hemorrhage after running a marathon. Lung 184: 331333.
90Newton, JR, Rogers, K, Marlin, DJ, Wood, JLN and Williams, RB (2005). Risk factors for epistaxis on British racecourses: evidence for locomotorty impact-induced trauma contributing to the aetiology of exercise-induced pulmonary haemeorrhage. Equine Veterinary Journal 37: 402411.
91Hinchcliff, KW (2000). Counting red cells – is it the answer to EIPH? Equine Veterinary Journal 32: 362363.
92Sweeney, CR, Rossier, Y, Ziemer, EL and Lindborg, S (1992). Effects of lung site and fluid volume on results of bronchoalveolar lavage fluid analysis in horses. American Journal of Veterinary Research 53: 13761379.
93Robinson, NE, Derksen, FJ, Slocombe, RF and Scott, JS (1986). Bronchoalveolar lavage. In: Huntingdon, P (ed.) Proceedings for the 8th Bain-Fallon Memorial Lectures. Australia: AEVA, pp. 612.
94McKane, SA and Rose, RJ (1993). Radiographic determination of the location of a blindly placed bronchoalveolar lavage catheter. Equine Veterinary Journal 5: 329332.
95McKane, SA and Rose, RJ (1995). Effects of exercise intensity and training on bronchoalveolar lavage cytology. Equine Veterinary Journal Supplement 18: 5862.
96Carre, PH, Laviolette, M, Belanger, J and Cormier, Y (1985). Technical variations of bronchoalveolar lavage (BAL): influence of atelectasis and the lung region lavaged. Lung 163: 117125.
97Whaley, SL, Muggenburg, BA, Seiler, FA and Wolff, RK (1987). Effect of aging on tracheal mucociliary clearance in beagle dogs. Journal of Applied Physiology 62: 13311334.
98Willoughby, RA, Ecker, GL, McKee, SL and Riddolls, LJ (1991). Use of scintigraphy for the determination of mucociliary clearance rates in normal, sedated, diseased, and exercised horses. Canadian Journal of Veterinary Research 55: 315320.
99Clark, CK, Lester, GD, Vetro, T and Rice, B (1995). Bronchoalveolar lavage in horses: effect of exercise and repeated sampling on cytology. Australian Veterinary Journal 72: 249252.
100Kindig, CA, Gallatin, LL, Erickson, HH, Fedde, MR and Poole, DC (2000). Cardiorespiratory impact of the nitric oxide synthase inhibitor L-NAME in the exercising horse. Respiration Physiology 120: 151166.
101Boothe, HW, Booth, DM, Komkov, A, Longnecker, MT and Hightower, D (1993). Tracheal mucociliary transport rate in awake dogs. American Journal of Veterinary Research 54: 18121816.
102Couëtil, LL and Hinchcliff, KW (2004). Chapter 29. Non-infectious respiratory diseases of the lower respiratory tract. In: Hinchcliff, KW, Kaneps, AJ and Geor, RJ (eds) Equine Sports Medicine and Surgery – Basic and Clinical Sciences of the Equine Athlete. New York: WB Saunders, pp. 613656.

Keywords

Related content

Powered by UNSILO

Evidence supporting exercise-induced pulmonary haemorrhage in racing greyhounds

  • T S Epp (a1), B Szladovits (a1), A Buchannan (a1), L Gates (a1), P McDonough (a2), D J Padilla (a1), J Smart (a3), H H Erickson (a1) and D C Poole (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.