Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T05:22:53.679Z Has data issue: false hasContentIssue false

A Unified Fractional-Step, Artificial Compressibility and Pressure-Projection Formulation for Solving the Incompressible Navier-Stokes Equations

Published online by Cambridge University Press:  03 June 2015

László Könözsy*
Affiliation:
Fluid Mechanics and Computational Science, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
Dimitris Drikakis*
Affiliation:
Fluid Mechanics and Computational Science, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
Get access

Abstract

This paper introduces a unified concept and algorithm for the fractional-step (FS), artificial compressibility (AC) and pressure-projection (PP) methods for solving the incompressible Navier-Stokes equations. The proposed FSAC-PP approach falls into the group of pseudo-time splitting high-resolution methods incorporating the characteristics-based (CB) Godunov-type treatment of convective terms with PP methods. Due to the fact that the CB Godunov-type methods are applicable directly to the hyperbolic AC formulation and not to the elliptical FS-PP (split) methods, thus the straightforward coupling of CB Godunov-type schemes with PP methods is not possible. Therefore, the proposed FSAC-PP approach unifies the fully-explicit AC and semi-implicit FS-PP methods of Chorin including a PP step in the dual-time stepping procedure to a) overcome the numerical stiffness of the classical AC approach at (very) low and moderate Reynolds numbers, b) incorporate the accuracy and convergence properties of CB Godunov-type schemes with PP methods, and c) further improve the stability and efficiency of the AC method for steady and unsteady flow problems. The FSAC-PPmethod has also been coupled with a non-linear, full-multigrid and fullapproximation storage (FMG-FAS) technique to further increase the efficiency of the solution. For validating the proposed FSAC-PP method, computational examples are presented for benchmark problems. The overall results show that the unified FSAC-PP approach is an efficient algorithm for solving incompressible flow problems.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kónózsy, L., Multiphysics CFD Modelling of Incompressible Flows at Low and Moderate Reynolds Numbers, Ph.D. Thesis, Cranfield University, College of Aeronautics, Department of Engineering Physics, 2012.Google Scholar
[2]Drikakis, D., Rider, W., High-Resolution Methods for Incompressible and Low-Speed Flows, Springer-Verlag, Berlin, 2005.Google Scholar
[3]Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2 (1967), 1226.Google Scholar
[4]Peyret, R., Taylor, T., Computational Methods for Fluid Flow, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar
[5]Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745762.CrossRefGoogle Scholar
[6]Temam, R., Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires (i), Arch. Rat. Mech. Anal., 32 (1969), 377385.CrossRefGoogle Scholar
[7]Ladyzhenskaya, O. A., Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, Gordon and Breach, New York, 1963.Google Scholar
[8]Bell, J. B., Colella, P., Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), 257283.CrossRefGoogle Scholar
[9]Bell, J. B., Marcus, D. L., A second-order projection method for variable-density flows, J. Comput. Phys., 101 (1992), 334348.CrossRefGoogle Scholar
[10]Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., Welcome, M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys., 142 (1998), 146.CrossRefGoogle Scholar
[11]Pember, R. B., Howell, L. H., Bell, J. B., Colella, P., Crutchfield, W. Y., Fiveland, W. A., Jessee, J. P., An adaptive projection method for unsteady low-Mach number combustion, Combust. Sci. Technol., 140 (1998), 123168.Google Scholar
[12]Kim, J., Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308323.Google Scholar
[13]Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 108 (1993), 5158.CrossRefGoogle Scholar
[14]Bell, J. B., Colella, P., Trangenstein, J. A., Higher order Godunov methods for general systems of hyperbolic conservation laws, J. Comput. Phys., 82 (1989), 362397.Google Scholar
[15]Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), 171200.Google Scholar
[16]Eberle, A., Characteristic flux averaging approach to the solution of Euler’s equation, VKI Lecture Series, Computational Fluid Dynamics, 1987-04.Google Scholar
[17]Drikakis, D., Govatsos, P. A., Papantonis, D. E., A characteristic-based method for incompressible flows, Int. J. Numer. Meth. Fl., 19 (1994), 667685.CrossRefGoogle Scholar
[18]Drikakis, D., Iliev, O. P., Vassileva, D. P., A nonlinear multigrid method for the three-dimensional incompressible Navier-Stokes equations, J. Comput. Phys., 146 (1998), 301321.Google Scholar
[19]Drikakis, D., A parallel multiblock characteristic-based method for three-dimensional incompressible flows, Advances in Engineering Software, 26 (1996), 111119.CrossRefGoogle Scholar
[20]Shapiro, E., Drikakis, D., Artificial compressibility, characteristics-based schemes for variable density, incompressible, multi-species flows. Part I. Derivation of different formulations and constant density limit, J. Comput. Phys., 210 (2005), 584607.Google Scholar
[21]Shapiro, E., Drikakis, D., Artificial compressibility, characteristics-based schemes for variable-density, incompressible, multispecies flows: Part II. Multigrid implementation and numerical tests, J. Comput. Phys., 210 (2005), 608631.CrossRefGoogle Scholar
[22]Shapiro, E., Drikakis, D., Gargiuli, J., Vadgama, P., Interface capturing in dual-flow microfluidics, J. Comput. Theor. Nanosci., 4 (4) (2007), 802806.Google Scholar
[23]Zamzamian, K., Razavi, S. E., Multidimensional upwinding for incompressible flows based on characteristics, J. Comput. Phys., 227 (2008), 86998713.Google Scholar
[24]Jiang, G.-S., Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202228.Google Scholar
[25]Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No. 9765,1997.Google Scholar
[26]Balsara, D. S., Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160 (2000), 405452.CrossRefGoogle Scholar
[27]Tang, H. S., Sotiropoulos, F., Fractional step artificial compressibility schemes for the unsteady incompressible Navier-Stokes equations, Comput. Fluids, 36 (2007), 974986.Google Scholar
[28]Zienkiewicz, O. C., Codina, R., A general algorithm for compressible and incompressible flow - Part I. The split, characteristic-based scheme, Int. J. Numer. Meth. Fl., 20 (1995), 869885.Google Scholar
[29]Zienkiewicz, O. C., Morgan, K.Sai, B. V. K. S., Codina, R., Vasquez, M., A general algorithm for compressible and incompressible flow - Part II. Tests on the explicit form, Int. J. Numer. Meth. Fl., 20 (1995), 887913.Google Scholar
[30]Zienkiewicz, O. C., Sai, B. V. K. S., Morgan, K., Codina, R., Split, characteristic based semi-implicit algorithm for laminar/turbulent incompressible flows, Int. J. Numer. Meth. Fl., 23 (1996), 787809.Google Scholar
[31]Zienkiewicz, O. C., Nithiarasu, P., Codina, R., Vazquez, M., Ortiz, P., The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems, Int. J. Numer. Meth. Fl., 31 (1999), 359392.Google Scholar
[32]Codina, R., Vazquez, M., Zienkiewicz, O. C., A general algorithm for compressible and incompressible flows. Part III: The semi-implicit form, Int. J. Numer. Meth. Fl., 27 (1998), 1332.3.0.CO;2-8>CrossRefGoogle Scholar
[33]Nithiarasu, P., On boundary conditions of the characteristic based split (CBS) algorithm for fluid dynamics, Int. J. Numer. Meth. Engng., 54 (2002), 523536.CrossRefGoogle Scholar
[34]Nithiarasu, P., An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows, Int. J. Numer. Meth. Engng., 56 (2003), 18151845.Google Scholar
[35]Nithiarasu, P., Mathur, J. S., Weatherill, N. P., Morgan, K., Three-dimensional incompressible flow calculations using the characteristic based split (CBS) scheme, Int. J. Numer. Meth. Fl., 44 (2004), 12071229.Google Scholar
[36]Nithiarasu, P., Codina, R., Zienkiewicz, O. C., The characteristic-based split (CBS) scheme - a unified approach to fluid dynamics, Int. J. Numer. Meth. Engng., 66 (2006), 15141546.Google Scholar
[37]Nithiarasu, P., Zienkiewicz, O. C., Analysis of an explicit and matrix free fractional step method for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), 55375551.Google Scholar
[38]Nithiarasu, P., Bevan, R. L. T., Murali, K., An artificial compressibility based fractional step method for solving time dependent incompressible flow equations. temporal accuracy and similarity with a monolithic method, Comput. Mech., 51 (2013), 255260.Google Scholar
[39]Courant, R., Hilbert, D., Methods of Mathematical Physics, John Wiley and Sons Inc., New York, 1991.Google Scholar
[40]Shu, C.-W., Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439471.Google Scholar
[41]Tome, M. F., McKee, S., GENSMAC - A computational marker and cell method for free surface flows in general domains, J. Comput. Phys., 110 (1994), 171186.Google Scholar
[42]Roache, P., Computational Fluid Dynamics, Albuquerque: Hermosa, 1976.Google Scholar
[43]Karniadakis, G., Beskok, A., Aluru, N., Microflows and Nanoflows, Springer, New York, 2005.Google Scholar
[44]Karniadakis, G. E., Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2nd ed), Oxford University Press, 2005.Google Scholar
[45]Karniadakis, G. E., Israeli, M., Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414443.Google Scholar
[46]Griebel, M., Dornseifer, T., Neunhoeffer, T., Numerical Simulation in Fluid Dynamics, Society for Industrial and Applied Mathematics (SIAM), 1998.Google Scholar
[47]Guermond, J.-L., Migeon, C., Pineau, G., Quartapelle, L., Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000, J. Fluid Mech., 450 (2002), 169199.Google Scholar
[48]Kotake, S., Hijikata, K., Fusegi, T., Numerical Simulations of Heat Transfer and Fluid Flow on a Personal Computer, Transport Processes in Engineering, Elsevier, London, 1993 3.Google Scholar
[49]Chen, X. Y., Toh, K. C., Chai, J. C., Yang, C., Developing pressure-driven liquid flow in microchannels under the electrokinetic effect, Int. J. Eng. Sci. 42 (2004), 609622.Google Scholar
[50]Chakraborty, S., Augmentation of peristaltic microflows through electroosmotic mechanisms, J. Phys. D: Appl. Phys., 39 (2006), 53565363.Google Scholar
[51]Chakraborty, S., Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels, Anal. Chim. Acta, 605 (2007), 175184.Google Scholar
[52]Ghia, U., Ghia, K. N., Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387411.Google Scholar
[53]Prasad, A. K., Koseff, J. R., Reynolds number and end-wall effects on a lid-driven cavity flow, Phys. Fluids A, 1 (2) (1989), 208218.Google Scholar
[54]Soh, W. Y., Goodrich, J. W., Unsteady solution of incompressible Navier-Stokes equations, J. Comput. Phys., 79 (1988), 113134.Google Scholar
[55]Leriche, E., Gavrilakis, S., Deville, M. O., A spectral direct simulation method for a 3D inhomogeneous domain, 24th Workshop Proceedings, Speedup Journal, 12 (2) (1998), 1721.Google Scholar
[56]Leriche, E., Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method, SIAM J. Sci. Comput., 27 (1-3) (2006), 335345.CrossRefGoogle Scholar
[57]Olesen, L. H., Computational Fluid Dynamics in Microfluidic Systems, M.Sc. Thesis, Mikroelektronik Centret, Technical University of Denmark, 2003.Google Scholar
[58]Grinstein, F. F., Margolin, L. G., Rider, W. J., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, 2007.Google Scholar