Skip to main content Accessibility help
×
Home

A Unified Fractional-Step, Artificial Compressibility and Pressure-Projection Formulation for Solving the Incompressible Navier-Stokes Equations

  • László Könözsy (a1) and Dimitris Drikakis (a1)

Abstract

This paper introduces a unified concept and algorithm for the fractional-step (FS), artificial compressibility (AC) and pressure-projection (PP) methods for solving the incompressible Navier-Stokes equations. The proposed FSAC-PP approach falls into the group of pseudo-time splitting high-resolution methods incorporating the characteristics-based (CB) Godunov-type treatment of convective terms with PP methods. Due to the fact that the CB Godunov-type methods are applicable directly to the hyperbolic AC formulation and not to the elliptical FS-PP (split) methods, thus the straightforward coupling of CB Godunov-type schemes with PP methods is not possible. Therefore, the proposed FSAC-PP approach unifies the fully-explicit AC and semi-implicit FS-PP methods of Chorin including a PP step in the dual-time stepping procedure to a) overcome the numerical stiffness of the classical AC approach at (very) low and moderate Reynolds numbers, b) incorporate the accuracy and convergence properties of CB Godunov-type schemes with PP methods, and c) further improve the stability and efficiency of the AC method for steady and unsteady flow problems. The FSAC-PPmethod has also been coupled with a non-linear, full-multigrid and fullapproximation storage (FMG-FAS) technique to further increase the efficiency of the solution. For validating the proposed FSAC-PP method, computational examples are presented for benchmark problems. The overall results show that the unified FSAC-PP approach is an efficient algorithm for solving incompressible flow problems.

Copyright

Corresponding author

References

Hide All
[1]Kónózsy, L., Multiphysics CFD Modelling of Incompressible Flows at Low and Moderate Reynolds Numbers, Ph.D. Thesis, Cranfield University, College of Aeronautics, Department of Engineering Physics, 2012.
[2]Drikakis, D., Rider, W., High-Resolution Methods for Incompressible and Low-Speed Flows, Springer-Verlag, Berlin, 2005.
[3]Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2 (1967), 1226.
[4]Peyret, R., Taylor, T., Computational Methods for Fluid Flow, Springer-Verlag, Berlin, 1983.
[5]Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745762.
[6]Temam, R., Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires (i), Arch. Rat. Mech. Anal., 32 (1969), 377385.
[7]Ladyzhenskaya, O. A., Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, Gordon and Breach, New York, 1963.
[8]Bell, J. B., Colella, P., Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), 257283.
[9]Bell, J. B., Marcus, D. L., A second-order projection method for variable-density flows, J. Comput. Phys., 101 (1992), 334348.
[10]Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., Welcome, M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys., 142 (1998), 146.
[11]Pember, R. B., Howell, L. H., Bell, J. B., Colella, P., Crutchfield, W. Y., Fiveland, W. A., Jessee, J. P., An adaptive projection method for unsteady low-Mach number combustion, Combust. Sci. Technol., 140 (1998), 123168.
[12]Kim, J., Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308323.
[13]Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 108 (1993), 5158.
[14]Bell, J. B., Colella, P., Trangenstein, J. A., Higher order Godunov methods for general systems of hyperbolic conservation laws, J. Comput. Phys., 82 (1989), 362397.
[15]Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), 171200.
[16]Eberle, A., Characteristic flux averaging approach to the solution of Euler’s equation, VKI Lecture Series, Computational Fluid Dynamics, 1987-04.
[17]Drikakis, D., Govatsos, P. A., Papantonis, D. E., A characteristic-based method for incompressible flows, Int. J. Numer. Meth. Fl., 19 (1994), 667685.
[18]Drikakis, D., Iliev, O. P., Vassileva, D. P., A nonlinear multigrid method for the three-dimensional incompressible Navier-Stokes equations, J. Comput. Phys., 146 (1998), 301321.
[19]Drikakis, D., A parallel multiblock characteristic-based method for three-dimensional incompressible flows, Advances in Engineering Software, 26 (1996), 111119.
[20]Shapiro, E., Drikakis, D., Artificial compressibility, characteristics-based schemes for variable density, incompressible, multi-species flows. Part I. Derivation of different formulations and constant density limit, J. Comput. Phys., 210 (2005), 584607.
[21]Shapiro, E., Drikakis, D., Artificial compressibility, characteristics-based schemes for variable-density, incompressible, multispecies flows: Part II. Multigrid implementation and numerical tests, J. Comput. Phys., 210 (2005), 608631.
[22]Shapiro, E., Drikakis, D., Gargiuli, J., Vadgama, P., Interface capturing in dual-flow microfluidics, J. Comput. Theor. Nanosci., 4 (4) (2007), 802806.
[23]Zamzamian, K., Razavi, S. E., Multidimensional upwinding for incompressible flows based on characteristics, J. Comput. Phys., 227 (2008), 86998713.
[24]Jiang, G.-S., Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202228.
[25]Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No. 9765,1997.
[26]Balsara, D. S., Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160 (2000), 405452.
[27]Tang, H. S., Sotiropoulos, F., Fractional step artificial compressibility schemes for the unsteady incompressible Navier-Stokes equations, Comput. Fluids, 36 (2007), 974986.
[28]Zienkiewicz, O. C., Codina, R., A general algorithm for compressible and incompressible flow - Part I. The split, characteristic-based scheme, Int. J. Numer. Meth. Fl., 20 (1995), 869885.
[29]Zienkiewicz, O. C., Morgan, K.Sai, B. V. K. S., Codina, R., Vasquez, M., A general algorithm for compressible and incompressible flow - Part II. Tests on the explicit form, Int. J. Numer. Meth. Fl., 20 (1995), 887913.
[30]Zienkiewicz, O. C., Sai, B. V. K. S., Morgan, K., Codina, R., Split, characteristic based semi-implicit algorithm for laminar/turbulent incompressible flows, Int. J. Numer. Meth. Fl., 23 (1996), 787809.
[31]Zienkiewicz, O. C., Nithiarasu, P., Codina, R., Vazquez, M., Ortiz, P., The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems, Int. J. Numer. Meth. Fl., 31 (1999), 359392.
[32]Codina, R., Vazquez, M., Zienkiewicz, O. C., A general algorithm for compressible and incompressible flows. Part III: The semi-implicit form, Int. J. Numer. Meth. Fl., 27 (1998), 1332.
[33]Nithiarasu, P., On boundary conditions of the characteristic based split (CBS) algorithm for fluid dynamics, Int. J. Numer. Meth. Engng., 54 (2002), 523536.
[34]Nithiarasu, P., An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows, Int. J. Numer. Meth. Engng., 56 (2003), 18151845.
[35]Nithiarasu, P., Mathur, J. S., Weatherill, N. P., Morgan, K., Three-dimensional incompressible flow calculations using the characteristic based split (CBS) scheme, Int. J. Numer. Meth. Fl., 44 (2004), 12071229.
[36]Nithiarasu, P., Codina, R., Zienkiewicz, O. C., The characteristic-based split (CBS) scheme - a unified approach to fluid dynamics, Int. J. Numer. Meth. Engng., 66 (2006), 15141546.
[37]Nithiarasu, P., Zienkiewicz, O. C., Analysis of an explicit and matrix free fractional step method for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), 55375551.
[38]Nithiarasu, P., Bevan, R. L. T., Murali, K., An artificial compressibility based fractional step method for solving time dependent incompressible flow equations. temporal accuracy and similarity with a monolithic method, Comput. Mech., 51 (2013), 255260.
[39]Courant, R., Hilbert, D., Methods of Mathematical Physics, John Wiley and Sons Inc., New York, 1991.
[40]Shu, C.-W., Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439471.
[41]Tome, M. F., McKee, S., GENSMAC - A computational marker and cell method for free surface flows in general domains, J. Comput. Phys., 110 (1994), 171186.
[42]Roache, P., Computational Fluid Dynamics, Albuquerque: Hermosa, 1976.
[43]Karniadakis, G., Beskok, A., Aluru, N., Microflows and Nanoflows, Springer, New York, 2005.
[44]Karniadakis, G. E., Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2nd ed), Oxford University Press, 2005.
[45]Karniadakis, G. E., Israeli, M., Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414443.
[46]Griebel, M., Dornseifer, T., Neunhoeffer, T., Numerical Simulation in Fluid Dynamics, Society for Industrial and Applied Mathematics (SIAM), 1998.
[47]Guermond, J.-L., Migeon, C., Pineau, G., Quartapelle, L., Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000, J. Fluid Mech., 450 (2002), 169199.
[48]Kotake, S., Hijikata, K., Fusegi, T., Numerical Simulations of Heat Transfer and Fluid Flow on a Personal Computer, Transport Processes in Engineering, Elsevier, London, 1993 3.
[49]Chen, X. Y., Toh, K. C., Chai, J. C., Yang, C., Developing pressure-driven liquid flow in microchannels under the electrokinetic effect, Int. J. Eng. Sci. 42 (2004), 609622.
[50]Chakraborty, S., Augmentation of peristaltic microflows through electroosmotic mechanisms, J. Phys. D: Appl. Phys., 39 (2006), 53565363.
[51]Chakraborty, S., Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels, Anal. Chim. Acta, 605 (2007), 175184.
[52]Ghia, U., Ghia, K. N., Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387411.
[53]Prasad, A. K., Koseff, J. R., Reynolds number and end-wall effects on a lid-driven cavity flow, Phys. Fluids A, 1 (2) (1989), 208218.
[54]Soh, W. Y., Goodrich, J. W., Unsteady solution of incompressible Navier-Stokes equations, J. Comput. Phys., 79 (1988), 113134.
[55]Leriche, E., Gavrilakis, S., Deville, M. O., A spectral direct simulation method for a 3D inhomogeneous domain, 24th Workshop Proceedings, Speedup Journal, 12 (2) (1998), 1721.
[56]Leriche, E., Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method, SIAM J. Sci. Comput., 27 (1-3) (2006), 335345.
[57]Olesen, L. H., Computational Fluid Dynamics in Microfluidic Systems, M.Sc. Thesis, Mikroelektronik Centret, Technical University of Denmark, 2003.
[58]Grinstein, F. F., Margolin, L. G., Rider, W. J., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, 2007.

Keywords

A Unified Fractional-Step, Artificial Compressibility and Pressure-Projection Formulation for Solving the Incompressible Navier-Stokes Equations

  • László Könözsy (a1) and Dimitris Drikakis (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed