Skip to main content Accessibility help

A Two-Parameter Continuation Method for Rotating Two-Component Bose-Einstein Condensates in Optical Lattices

  • Y.-S. Wang (a1), B.-W. Jeng (a2) and C.-S. Chien (a3)


We study efficient spectral-collocation and continuation methods (SCCM) for rotating two-component Bose-Einstein condensates (BECs) and rotating two-component BECs in optical lattices, where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. A novel two-parameter continuation algorithm is proposed for computing the ground state and first excited state solutions of the governing Gross-Pitaevskii equations (GPEs), where the classical tangent vector is split into two constraint conditions for the bordered linear systems. Numerical results on rotating two-component BECs and rotating two-component BECs in optical lattices are reported. The results on the former are consistent with the published numerical results.


Corresponding author


Hide All
[1]Madison, K. W., Chevy, F., Wohlleben, W. and Dalibard, J., Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84 (2000), 806809.
[2]Abo-Shaeer, J. R., Raman, C., Vogels, J. M. and Ketterle, W., Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476479.
[3]Haljan, P. C., Coddington, I., Engels, P. and Cornell, E. A., Driving Bose-Einstein-condensate vorticity with a rotating normal cloud, Phys. Rev. Lett., 87 (2001), 210403.
[4]Hodby, E., Hechenblaikner, G., Hopkins, S. A., Marago, O. M. and Foot, C. J., Vortex nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential, Phys. Rev. Lett., 88 (2002), 010405.
[5]Mueller, E. J. and Ho, T.-L., Two-component Bose-Einstein condensates with a large number of vortices, Phys. Rev. Lett., 88 (2002), 180403.
[6]Kasamatsu, K., Tsubota, M. and Ueda, M., Vortex phase diagram in rotating two-component Bose-Einstein condensates, Phys. Rev. Lett., 91 (2003), 150406.
[7]Kasamatsu, K., Tsubota, M. and Ueda, M., Structure of vortex lattices in rotating two-component Bose-Einstein condenstates, Phys. B, 329-333 (2003), 2324.
[8]Kasamatsu, K., Tsubota, M. and Ueda, M., Vortex states of two-component Bose-Einstein condensates with and without internal Josephson coupling, J. Low Temp. Phys., 134 (2004), 719724.
[9]Kasamatsu, K. and Tsubota, M., Vortex sheet in rotating two-component Bose-Einstein condensates, Phys. Rev. A, 79 (2009), 023606.
[10]Zhang, Y., Bao, W. and Li, H., Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation, Phys. D, 234 (2007), 4969.
[11]Wang, H., Numerical simulations on stationary states for rotating two-component Bose-Einstein condensates, J. Sci. Comput., 38 (2009), 149163.
[12]Mason, J. C. and Handscomb, D. C., Chebyshev Polynomials, Chapman & Hall/CRC, New York, 2003.
[13]Shen, J., Tang, T. and Wang, L.-L., Spectral Method: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, New York, 2011.
[14]Chang, S.-L. and Chien, C.-S., Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates, Comput. Phys. Commun., 177 (2007), 707719.
[15]Li, Z.-C., Chen, S.-Y., Chien, C.-S. and Chen, H.-S., A spectral collocation method for a rotating Bose-Einstein condensation in optical lattices, Comput. Phys. Commun., 182 (2011), 12151234.
[16]Wang, Y.-S. and Chien, C.-S., A spectral-Galerkin continuation method using Chebyshev polynomials for the numerical solutions of the Gross-Pitaevskii equation, J. Comput. Appl. Math., 235 (2011), 27402757.
[17]Chen, H.-S. and Chien, C.-S., Multilevel spectral-Galerkin and continuation methods for nonlinear Schrodinger equations, SIAM J. Multiscale Model. Simul., 8 (2009), 370392.
[18]Chien, C.-S., Chang, S.-L. and Wu, B., Two-stage continuation algorithms for Bloch waves of Bose-Einstein condensates in optical lattices, Comput. Phys. Commun., 181 (2010), 17271737.
[19]Chien, C.-S., Chang, S.-L. and Mei, Z., Tracing the buckling of a rectangular plate with the block GMRES method, J. Comput. Appl. Math., 136 (2001), 199218.
[20]Kuo, Y.-C., Lin, W.-W., Shieh, S.-F. and Wang, W., A minimal energy tracking continuation method for coupled nonlinear Schrodinger equations, J. Comput. Phys., 228 (2009), 79417956.
[21]Chang, S.-M., Kuo, Y.-C., Lin, W.-W. and Shieh, S.-F., A continuation BSOR-Lanczos-Galerkin method for positive bound states of a multi-component Bose-Einstein condensate, J. Comput. Phys., 210 (2005), 439458.
[22]Chen, J.-H., Chern, I.-L. and Wang, W., Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods, J. Comput. Phys., 230 (2011), 22222236.
[23]Alfimov, G. L. and Zezyulin, D. A., Nonlinear modes for the Gross-Pitaevskii equation-a demonstrative computation approach, Nonlinearity, 20 (2007), 20752092.
[24]Zezyulin, D. A., Alfimov, G. L., Konotop, V. V. and M, V.Pérez-Garcia, Control of nonlinear modes by scattering-length management in Bose-Einstein condensates, Phys. Rev. A., 76 (2007), 013621.
[25]Zezyulin, D. A., Alfimov, G. L., Konotop, V. V. and Péréz-Garcia, V. M., Stability of excited states of a Bose-Einstein condensates in an anharmonic trap, Phys. Rev. A., 78 (2008), 013606.
[26]Chang, S.-L., Chien, C.-S. and Jeng, B.-W., Computing wave functions of nonlinear Schrodinger equations: A time-independent approach, J. Comput. Phys., 226 (2007), 104130.
[27]Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd ed., The Johns Hopkins Univ. Press, Baltimore, 1996.
[28]Allgower, E. L. and Georg, K., Introduction to Numerical Continuation Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.
[29]Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, Springer, Berlin, 1987.
[30]Chan, T. F., Deflation techniques and block-elimination algorithm for solving Bordered singular system, SIAM J. Sci. Statist. Comput., 5 (1984), 121134.
[31]Budden, P. J. and Norbury, J., A nonlinear elliptic eigenvalue problem, J. Inst. Math. Appl., 24 (1979), 933.
[32]Chien, C.-S. and Jeng, B.-W., A two-grid discretization scheme for semilinear elliptic eigenvalue problems, SIAM J. Sci. Comput., 27 (2006), 12871304.


Related content

Powered by UNSILO

A Two-Parameter Continuation Method for Rotating Two-Component Bose-Einstein Condensates in Optical Lattices

  • Y.-S. Wang (a1), B.-W. Jeng (a2) and C.-S. Chien (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.