Skip to main content Accessibility help

A Stability Analysis of Hybrid Schemes to Cure Shock Instability

  • Zhijun Shen (a1) (a2), Wei Yan (a1) and Guangwei Yuan (a1)


The carbuncle phenomenon has been regarded as a spurious solution produced by most of contact-preserving methods. The hybrid method of combining high resolution flux with more dissipative solver is an attractive attempt to cure this kind of non-physical phenomenon. In this paper, a matrix-based stability analysis for 2-D Euler equations is performed to explore the cause of instability of numerical schemes. By combining the Roe with HLL flux in different directions and different flux components, we give an interesting explanation to the linear numerical instability. Based on such analysis, some hybrid schemes are compared to illustrate different mechanisms in controlling shock instability. Numerical experiments are presented to verify our analysis results. The conclusion is that the scheme of restricting directly instability source is more stable than other hybrid schemes.


Corresponding author


Hide All
[1]Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14 (2013), 12521286.
[2]Chauvat, Y., Moschetta, J. M. and Gressier, J., Shock wave numerical structure and the carbuncle phenomenon, Int. J. Numer. Meth. Fluids 47, 2005, 903909.
[3]Davis, S.F., A rotationally biased upwind difference scheme for the Euler equations, J. Comput. Phys., 56 (1984), 6592.
[4]Dumbser, M., Morschetta, J. M., Gressier, J., A matrix stability analysis of the carbuncle phenomenon, J. Comput. Phys., 197 (2004), 647670.
[5]Dumbser, M. and Toro, E. F., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10(2011), 635671.
[6]Godunov, S. K., A finite difference method for computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb., 47 (1959), 271306.
[7]Gressier, J. and Moschetta, J. M., Robustness versus accuracy in shock-wave computations, Int. J. Numer. Meth. Fluid., 33 (2000), 313332.
[8]Harten, A. and Hyman, J. M., Self adjusting grid methods for one dimensional hyperbolic conservation laws, J. Comput. Phys., 50 (1983), 235269.
[9]Harten, A., Lax, P. D. and Leer, B. van, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, 25 (1983), 3561.
[10]Janhunen, P., A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys., 166 (2000), 649661.
[11]Kemm, F., A note on the carbuncle phenomenon in shallow water simulations, ZAMM – Journal of Applied Mathematics and Mechanics, DOI: 10.1002/zamm.201200176
[12]Kim, S. S., Kim, C., Rho, O. H. and Hong, S. K., Cures for the shock instability: development of a shock-stable Roe scheme, J. Comput. Phys., 185 (2003), 342374.
[13]Kim, S. D., Lee, B. J., Lee, H. J., Jeung, I., Robust HLLC Riemann solver with weighted average flux scheme for strong shock, J. Comput. Phys., 228 (2009), 76347642.
[14]Kitamura, K., Roe, P. and Ismail, F., Evaluation of Euler Fluxes for Hypersonic Flow Computations, AIAA JOURNAL, 47(1) (2009), 4453.
[15]Levy, D. W., Powell, K. G., B. van Leer, Use of a rotated Riemann solver for the two-dimensional Euler equations, J. Comput. Phys., 106 (1993), 201214.
[16]Q Li, J., Li, Q. B., Xu, K., Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations, J. Comput. Phys., 230 (2011), 50805099.
[17]Liou, M. S. and Steffen, C. J., A new flux splitting scheme, J. Comput. Phys., 107 (1993), 2339.
[18]Liou, M. S., Mass Flux schemes and connection to shock instability, J. Comput. Phys., 160 (2000), 623648.
[19]Moschetta, J. M., Gressier, J., Robinet, J. C., Casalis, G., The Carbuncle Phenomenon: a Genuine Euler Instability?, in Godunov Methods, Theory and Applications, Ed. Toro, E.F., Kluwer Academic/Plenum Publ., (1995), 639645.
[20]Nishikawa, H. and Kitamura, K., Very simple, carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers, J. Comput. Phys., 227 (2008), 25602581.
[21]Noh, W. F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72 (1987) 78120.
[22]Pandolfi, M. and D’Ambrosio, D., Numerical instabilities in upwind methods: analysis and cures for the carbuncle phenomenon, J. Comput. Phys., 166 (2001), 271301.
[23]Park, S. H., Kwon, J. H., On the dissipation mechanism of Godunov-type schemes, J. Comput. Phys., 188 (2003), 524542.
[24]Peery, K. M. and Imlay, S. T., Blunt-Body Flow Simulations, AIAA Paper 88-2904, 1988.
[25]Quirk, J., A contribution to the Great Riemann Solver Debate, Int. J. Numer. Meth. Fluid., 18 (1994), 555574.
[26]Ren, Y. X., A robust shock-capturing scheme based on rotated Riemann solvers, Computers & Fluids, 32 (2003), 13791403.
[27]Robinet, J., Gressier, J., Casalis, G. and Moschetta, J.-M., Shock wave instability and carbuncle phenomenon: same intrinsic origin?, J. Fluid Mech., 417 (2000), 237263.
[28]Roe, P. L., Approximate Riemann solvers, parameter vector and difference schemes, J. Comput. Phys., 43 (1981), 357372.
[29]Sanders, R., Morano, E. and Druguet, M., Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics, J. Comput. Phys., 145 (1998), 511537.
[30]Scandaliato, A. L. and Liou, M. S.AUSM-based high-order solution for Euler equations. Commun. Comput. Phys., 12 (2012), 10961120.
[31]Toro, E. F., Spruce, M. and Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Wave, 4 (1994), 2534.
[32]Wada, Y. and Liou, M. S., An accurate and robust flux splitting scheme for shock and contact discontinuities, SIAM J. Sci. Comput., 18(3) (1997), 633657.
[33]Wada, Y. and Liou, M. S., A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities, NASA T. M. 106452 (1994).
[34]Wu, H., Shen, L. J., Shen, Z. J., A hybrid numerical method to cure numerical shock instability, Commun. Comput. Phys., 8(5) (2010), 12641271.
[35]Xu, K., Li, Z., Dissipative mechanism in Godunov-type schemes, Int. J. Numer. Methods Fluids, 37 (2001), 122.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed