Skip to main content Accessibility help

Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme

  • Tony W. H. Sheu (a1) (a2) (a3), S. Z. Wang (a1), J. H. Li (a1) and Matthew R. Smith (a4)


In this study an explicit Finite Difference Method (FDM) based scheme is developed to solve the Maxwell's equations in time domain for a lossless medium. This manuscript focuses on two unique aspects – the three dimensional time-accurate discretization of the hyperbolic system of Maxwell equations in three-point non-staggered grid stencil and it's application to parallel computing through the use of Graphics Processing Units (GPU). The proposed temporal scheme is symplectic, thus permitting conservation of all Hamiltonians in the Maxwell equation. Moreover, to enable accurate predictions over large time frames, a phase velocity preserving scheme is developed for treatment of the spatial derivative terms. As a result, the chosen time increment and grid spacing can be optimally coupled. An additional theoretical investigation into this pairing is also shown. Finally, the application of the proposed scheme to parallel computing using one Nvidia K20 Tesla GPU card is demonstrated. For the benchmarks performed, the parallel speedup when compared to a single core of an Intel i7-4820K CPU is approximately 190x.


Corresponding author

*Corresponding author. Email addresses: (T.W. H. Sheu), (S. Z. Wang), (J. H. Li), (M. R. Smith)


Hide All
Communicated by Weng Cho Chew



Hide All
[1] Cai, J. X., Wang, Y. S., Wang, B., and Jiang, B., New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell's equations, J. Math. Phys. 47, 118, 2006.
[2] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE T. Antenn. Propag. 14, 302307, 1966.
[3] Panaretos, A. H. and Diaz, R. E., A simple and accurate methodology to optimize parameter-dependent finite-difference time-domain schemes, IEEE Trans. Microw. Theory. Tech. Vol. 56(5), 11251136, 2008.
[4] Finkelstein, B. and Kastner, R., Finite difference time domain dispersion reduction schemes, J. Comput. Phys. Vol. 221(1), 422438, 2007.
[5] Hawke, P., Ed., Higher-order accurate method in time domain computational electromagnetics: A review in Advances in Imaging and Electron Physics, New York. Academic, Vol. 127, 59123, 2003.
[6] Wang, S. and Teixeira, F. L., A three-dimensional angle-optimized finite-difference time-domain algorithm, IEEE Trans. Microw. Theory. Tech. Vol. 31(3), 811817, 2003.
[7] Wang, S. and Teixeira, F. L., Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems, IEEE Trans. Antennas Propagat. Vol. 51(8), 18181828, 2003.
[8] Shlager, K. L. and Schneider, J. B., Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms, IEEE Trans. Antennas Propagat. Vol. 31(3), 642653, 2003.
[9] Chi, J., Liu, F., Weber, E., Li, Y., and Crozier, S., GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI, IEEE Trans. Biomed. Eng. Vol. 58(6), 1789–96, 2011.
[10] Zunoubi, M. R., Payne, J., and Roach, W. P., CUDA implementation of TE-FDTD solution of Maxwell's equations in dispersive media, IEEE Antennas and Propagation Society, Vol. 9, 756759, 2010.
[11] Lee, K. H., Ahmed, I., Goh, R. S. M., Khoo, E. H., Li, E. P., and Hung, T. G. G., Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications, Progr. Electromagn. Res. 116, 441456, 2011.
[12] Zygiridis, T. T., High-order error-optimized FDTD algorithm with GPU implementation, IEEE Trans. Magnetics, Vol. 49(5), 18091813, 2013.
[13] Micikevicius, P., 3D Finite Difference Computation on GPUs Using CUDA, ACM New York 79-84, 2009.
[14] Zhang, B., Xue, Z.H., Ren, W., Li, W. M., and Sheng, X. Q., Accelerating FDTD algorithm using GPU computing, IEEE (ICMTCE) 410-413, 2011.
[15] Shams, R. and Sadeghi, P., On optimization of finite-difference time-domain (FDTD) computation on heterogenerous and GPU clusters, J. Parallel Distrib. Comput. 71, 584593, 2011.
[16] Bridges, T. J. and Reich, S., Multi-symplectic integration numerical scheme for Hamiltonian PDEs that conserves symplecticity, Phys. Lett. A 284, 184193, 2001.
[17] Cockburn, B., Li, F., and Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comput. Phys. 194, 588610, 2004.
[18] Anderson, N., Arthurs, A. M., Helicity and variational principles for Maxwell's equations, Int. J. Electron. 54, 861864, 1983.
[19] Marsden, J. E., Weinstein, A., The Hamiltonian structure of Maxwell-Vlasov equations, Physical D, 4, 394406, 1982.
[20] Sheu, T.W.H., Hung, Y.W., Tsai, M.H., and Li, J.H., On the development of a triple-preserving Maxwell's equations solver in non-staggered grids, Int. J. Numer. Methods Fluids. 63, 13281346, 2010.
[21] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys 114, 185200, 1994.
[22] Gedney, S. D., An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices, IEEE T. Antenn. Propag. 44, 16301639, 1996.
[23] Hockney, R. W., A fast solution of Poisson's equation using Fourier analysis, J. ACM 12(1), 95113, 1965.
[24] Stone, H. S., An efficient parallel algonithm for the solution of a tridiagonal linear system of equations, J. ACM 20(1), 2738, 1973.
[25] Sengupta, S., Lefohn, A. E., and Owens, J. D., A work-efficient step-efficient prefix sum algorithm, In Proceedings of the Workshop on Edge Computing using New Commodity Architectures pp. D-26-27, 2006.
[26] Sanz-Serna, J. M., Symplectic Runge-Kutta and related methods: recent results, Physica D 293-302, 1992.
[27] Jiang, L. L., Mao, J. F., and Wu, X. L., Symplectic finite-difference time-domain method for Maxwell equations, IEEE Trans. Magn. 42(8), 19911995, 2006.
[28] Sha, W., Huang, Z. X., Chen, M. S., and Wu, X. L., Survey on symplectic finite-difference time-domain schemes for Maxwell's equations, IEEE T. Antenn. Propag. 56, 493510, 2008.
[29] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 17, 328346, 1996.
[30] Zingy, D. W., Lomax, H., and Jurgens, H., High-accuracy finite-difference schemes for linear wave propagation, SIAM J. Sci. Comput. 17, 328346, 1996.
[31] Spachmann, H., Schuhmann, R., Weiland, T., High order spatial operators for the finite integration theory, ACES Journal 17(1), 1122, 2002.
[32] Kashiwa, T., Sendo, Y., Taguchi, K., Ohtani, T., and Kanai, Y., Phase velocity errors of the non-standard FDTD method and comparison with other high-accuracy FDTD methods, IEEE Transactions on Magnetics 39(4), 21252128, 2003.
[33] Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., and Joannopoulos, J. D., High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77, 37873790, 1996.
[34] Liu, Victor, Miller, David A. B., Fan, Shanhui, Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect, Optics Express Vol. 20 (2012) 2838828397.


MSC classification

Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme

  • Tony W. H. Sheu (a1) (a2) (a3), S. Z. Wang (a1), J. H. Li (a1) and Matthew R. Smith (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed