Skip to main content Accessibility help
×
Home

Simulating Biofilm Deformation and Detachment with the Immersed Boundary Method

Abstract

We apply the immersed boundary (or IB) method to simulate deformation and detachment of a periodic array of wall-bounded biofilm colonies in response to a linear shear flow. The biofilm material is represented as a network of Hookean springs that are placed along the edges of a triangulation of the biofilm region. The interfacial shear stress, lift and drag forces acting on the biofilm colony are computed by using fluid stress jump method developed by Williams, Fauci and Gaver [Disc. Con-tin. Dyn. Sys. B 11(2):519–540, 2009], with a modified version of their exclusion filter. Our detachment criterion is based on the novel concept of an averaged equivalent continuum stress tensor defined at each IB point in the biofilm which is then used to determine a corresponding von Mises yield stress; wherever this yield stress exceeds a given critical threshold the connections to that node are severed, thereby signalling the onset of a detachment event. In order to capture the deformation and detachment behaviour of a biofilm colony at different stages of growth, we consider a family of four biofilm shapes with varying aspect ratio. For each aspect ratio, we varied the spacing between colonies to investigate role of spatial clustering in offering protection against detachment. Our numerical simulations focus on the behaviour of weak biofilms (with relatively low yield stress threshold) and investigate features of the fluid-structure interaction such as locations of maximum shear and increased drag. The most important conclusions of this work are: (a) reducing the spacing between colonies reduces drag by from 50 to 100% and alters the interfacial shear stress profile, suggesting that even weak biofilms may be able to grow into tall structures because of the protection they gain from spatial proximity with other colonies; (b) the commonly employed detachment strategy in biofilm models based only on interfacial shear stress can lead to incorrect or inaccurate results when applied to the study of shear induced detachment of weak biofilms. Our detachment strategy based on equivalent continuum stresses provides a unified and consistent IB framework that handles both sloughing and erosion modes of biofilm detachment, and is consistent with strategies employed in many other continuum based biofilm models.

Copyright

Corresponding author

*Corresponding author. Email addresses:rsudarsa@uoguelph.ca (R. Sudarsan), sud1800@yahoo.co.in (S. Ghosh), stockie@math.sfu.ca (J. M. Stockie), heberl@uoguelph.ca (H. J. Eberl)

References

Hide All
[1]Alpkvist, E. and Klapper, I.. Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci. Technol., 55(8-9):265, 2007.
[2]Alpkvist, E. and Klapper, I.. A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull. Math. Biol., 69(2):765789, 2007.
[3]Boresi, A.P. and Schmidt, R.J.. Advanced Mechanics of Materials. Wiley New York, 6th edition, 2003.
[4]Arvo, J.. Graphics Gems II, volume 2. Morgan Kaufmann, 1991.
[5]Bagi, K.. Stress and strain in granular assemblies. Mech. Mater., 22(3):165177, 1996.
[6]Balevičius, R., Sielamowicz, I., Mroz, Z., and Kačianauskas, R.. Investigation of wall stress and outflow rate in a flat-bottomed bin: A comparison of the DEM model results with the experimental measurements. Powder Technol., 214(3):322336, 2011.
[7]Boaventura, R. A. and Rodrigues, A. E.. Denitrification kinetics in a rotating disk biofilm reactor. Chem. Eng. J., 65(3):227235, 1997.
[8]Böl, M., Möhle, R. B., Haesner, M., Neu, T. R., Horn, H., and Krull, R.. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol. Bioeng., 103(1):177186, 2009.
[9]Bottino, D. C. and Fauci, L. J.. A computational model of ameboid deformation and locomotion. Euro. Biophys. J., 27(5):532539, 1998.
[10]Byrne, E., Dzul, S., Solomon, M., Younger, J., and Bortz, D. M.. Postfragmentation density function for bacterial aggregates in laminar flow. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 83(401):041911, 2011.
[11]Costerton, J. W., Stewart, P. S., and Greenberg, E. P.. Bacterial biofilms: A common cause of persistent infections. Science, 284(5418):13181322, 1999.
[12]Cotin, Stéphane, Delingette, Hervé, and Ayache, Nicholas. Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graphics, 5(1):6273, 1999.
[13]Dillon, R. and Fauci, L.. A microscale model of bacterial and biofilm dynamics in porous media. Biotechnol. Bioeng., 68(5):536547, 2000.
[14]Dillon, R., Fauci, L., Fogelson, A., and D. Gaver III, . Modeling biofilm processes using the immersed boundary method. J. Comput. Phys., 129(1):5773, 1996.
[15]Donlan, R. M. and Costerton, W. J.. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 15(2):167193, 2002.
[16]Duddu, R., Chopp, D. L., and Moran, B.. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol. Bioeng., 103(1):92104, 2009.
[17]Eberl, H. J., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B., van Loosdrecht, M., and Wanner, O.. Mathematical Modeling of Biofilms, volume 18 of Scientific and Technical Report Series. International Water Association, London, 2006.
[18]Eberl, H. J., Parker, D. F., and van Loosdrecht, M. C. M.. A new deterministic spatio-temporal continuum model for biofilm development. Theor. Med., 3(3):161175, 2001.
[19]Eberl, H. J. and Sudarsan, R.. Exposure of biofilms to slow flow fields: The convective contribution to growth and disinfection. J. Theor. Biol., 253(4):788807, 2008.
[20]Elias, R. N., Martins, Marcos A. D., and Alvaro, L. G. A.Coutinho. Simple finite element-based computation of distance functions in unstructured grids. Int. J. Numer. Meth. Eng., 72(9):10951110, 2007.
[21]Fauci, L. J. and McDonald, A.. Sperm motility in the presence of boundaries. Bull.Math. Biol., 57(5):679699, 1995.
[22]Fogelson, A. L. and Guy, R. D.. Platelet–wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol., 21(4):293334, 2004.
[23]Fortin, J., Millet, O., and De Saxcé, G.. Construction of an averaged stress tensor for a granular medium. Euro. J. Mech. A Solids, 22(4):567582, 2003.
[24]Gaboriaud, F., Gee, M.L., Strugnell, R., and Duval, J.F.. Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir, 24(19):10988– 10995, 2008.
[25]Gaver III, D. P. and Kute, S.M.. A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys. J., 75(2):721733, 1998.
[26]Ghosh, S. and Stockie, J. M.. Numerical simulations of particle sedimentation using the immersed boundary method. Commun. Comput. Phys., 18(2):380416, 2015.
[27]Griffith, B. E.. On the volume conservation of the immersed boundary method. Commun. Comput. Phys., 12(2):401432, 2012.
[28]Griffith, B. E., Hornung, R. D., McQueen, D. M., and Peskin, C. S.. An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys., 223(1):1049, 2007.
[29]Guélon, T. H., Mathias, J. D., and Stoodley, P.. Advances in biofilm mechanics. In Flemming, H.-C., Wingender, J., and Szewzyk, U., editors, Biofilm Highlights, volume 5 of Springer Series on Biofilms, pages 111–139. Springer, 2011.
[30]Hammond, J. F., Stewart, E. J., Younger, J. G., M. J. Solomon, , and Bortz, D. M.. Spatially heterogeneous biofilm simulations using an immersed boundary method with lagrangian nodes defined by bacterial locations. arXiv preprint arXiv:1302.3663, 2013.
[31]Hammond, J. F., Stewart, E. J., Younger, J.G., Solomon, M. J., and Bortz, D.M.. Variable viscosity and density biofilm simulations using an immersed boundary method, part I: Numerical ccheme and convergence results. Comput. Model. Eng. Sci, 98(3):295340, 2014.
[32]Hohne, D. N., Younger, J. G., and Solomon, M. J.. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir, 25(13):77437751, 2009.
[33]Jagota, A. and Bennison, S. J.. Spring-network and finite-element models for elasticity and fracture. In Non-linearity and Breakdown in Soft Condensed Matter, pages 186201. Springer, 1994.
[34]Jagota, A. and Bennison, S.J.. Element breaking rules in computational models for brittle fracture. Modell. Simul. Mater. Sci. Eng., 3(4):485, 1995.
[35]Bolander, J.E. Jr, Hong, G. S., and Yoshitake, K.. Structural concrete analysis using rigid-body-spring networks. Comput. Aided Civ. Infrastruct. Eng., 15(2):120133, 2000.
[36]Kissel, J. C., McCarty, P. L., and Street, R. L.. Numerical simulation of mixed-culture biofilm. J. Environ. Eng., 110(2):393411, 1984.
[37]Klapper, I. and Dockery, J.. Finger formation in biofilm layers. SIAMJ. Appl.Math., 62(3):853869, 2002.
[38]Klausen, M., Aaes-Jørgensen, A., Molin, S., and Tolker-Nielsen, T.. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol., 50(1):6168, 2003.
[39]Kreft, J. U., Picioreanu, C., Wimpenny, J.W. T., and van Loosdrecht, M. C.M.. Individual-based modelling of biofilms. Microbiology+, 147(11):28972912, 2001.
[40]Lai, M.-C. and Peskin, C. S.. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys., 160(2):705719, 2000.
[41]Lewandowski, Z. and Beyenal, H.. Fundamentals of Biofilm Research. CRC press, 2013.
[42]Lindley, B., Wang, Q., and Zhang, T.. Multicomponent hydrodynamic model for heterogeneous biofilms: Two-dimensional numerical simulations of growth and interaction with flows. Phys. Rev. E, 85(3):031908, 2012.
[43]Liu, D., Li, H., and Liu, Y.. Numerical simulation of creep damage and life prediction of superalloy turbine blade. Math Probl. Eng., 2015:732502, 2015.
[44]Lloyd, B. A., G. Székely, , and Harders, M.. Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comput. Graphics, 13(5):10811094, 2007.
[45]Van Loosdrecht, M.C.M., Heijnen, J. J., Eberl, H., Kreft, J., and Picioreanu, C.. Mathematical modelling of biofilm structures. ANTON LEEUW INT J G, 81(14):245256, 2002.
[46]Manz, B., Volke, F., Goll, D., and Horn, H.. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging(mri). Biotechnol. Bioeng., 84(4):424432, 2003.
[47]Merkey, B. V., Rittmann, B. E., and Chopp, D. L.. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms. J. Theor. Biol., 259(4):670683, 2009.
[48]Mori, Y.. Convergence proof of the velocity field for a Stokes flow immersed boundary method. Commun. Pure Appl. Math., 61:12131263, 2008.
[49]Mori, Y. and Peskin, C. S.. Implicit second-order immersed boundary methods with boundary mass. Comput.Method. Appl. Mech. Eng., 197(25):20492067, 2008.
[50]Nicolella, C., van Loosdrecht, M. C. M., and Heijnen, J. J.. Wastewater treatment with particulate biofilm reactors. J. Biotechnol., 80(1):133, 2000.
[51]Ohashi, A. and Harada, H.. A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Sci. Technol., 34(5-6):201211, 1996.
[52]Ostoja-Starzewski, M.. Latticemodels in micromechanics. Appl.Mech. Rev., 55(1):3560, 2002.
[53]Ostoja-Starzewski, M., Sheng, P. Y., and Alzebdeh, K.. Spring network models in elasticity and fracture of composites and polycrystals. Comp. Mater. Sci., 7(1):8293, 1996.
[54]Persson, P.-O. and Strang, G.. A simple mesh generator in MATLAB. SIAM Review, 46(2):329345, 2004.
[55]Peskin, C. S.. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25(3):220252, 1977.
[56]Peskin, C. S.. The immersed boundary method. Acta Numerica, 11:479517, 2003.
[57]Picioreanu, C.,van Loosdrecht, M.C.M., and Heijnen, J. J.. Two-dimensionalmodel of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng., 72(2):205218, 2001.
[58]Press, W. H.. Numerical Recipes in Fortran 77: The Art of Scientific Computing, volume 1. Cambridge University Press, 1992.
[59]Rusconi, R., Lecuyer, S., Autrusson, N., Guglielmini, L., and Stone, H. A.. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys. J., 100(6):13921399, 2011.
[60]Schlangen, E. and Garboczi, E. J.. New method for simulating fracture using an elastically uniform random geometry lattice. Int. J. Eng. Sci., 34(10):11311144, 1996.
[61]Schlangen, E. and Garboczi, E. J.. Fracture simulations of concrete using latticemodels: Computational aspects. Eng. Fract. Mech., 57(2):319332, 1997.
[62]Seeluangsawat, P.. 3-D computational investigation of viscoelastic biofilms using GPUs. PhD thesis, Department of Mathematics, University of South Carolina, Columbia, SC, 2011.
[63]Shi, X. and Zhu, X.. Biofilm formation and food safety in food industries. Trends Food Sci. Technol., 20(9):407413, 2009.
[64]Smith, B., B. Vaughan, , and Chopp, D.. The extended finite element method for boundary layer problems in biofilm growth. Commun. Appl. Math. Comput. Sci., 2(1):3556, 2007.
[65]Stockie, J. M.. Analysis and computation of immersed boundaries, with application to pulp fibers. PhD thesis, Department of Mathematics, University of British Columbia, 1997.
[66]Stockie, J. M.. Modelling and simulation of porous immersed boundaries. Comput. Struct., 87(11-12):701709, 2009.
[67]Stotsky, J. A., Hammond, J. F., Pavlovsky, L., Stewart, E. J., Younger, J. G., Solomon, M. J., and Bortz, D.M.. Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogenous rheology-ibm. arXiv preprint arXiv:1504.07326, 2015.
[68]Sudarsan, R., Milferstedt, K., Morgenroth, E., and Eberl, H. J.. Quantification of detachment forces on rigid biofilm colonies in a roto-torque reactor using computational fluid dynamics tools. Water Sci., 52(7):149154, 2005.
[69]Taherzadeh, D., Picioreanu, C., and Horn, H.. Mass transfer enhancement in moving biofilm structures. Biophys. J., 102(7):14831492, 2012.
[70]Towler, B. W., Cunningham, A., Stoodley, P., and McKittrick, L.. A model of fluid-biofilm interaction using a Burger material law. Biotechnol. Bioeng., 96(2):259271, 2007.
[71]Towler, B. W., Rupp, C. J., Cunningham, A. B., and Stoodley, P.. Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling, 19(5):279285, 2003.
[72]Valiei, A., Kumar, A., Mukherjee, P. P., Liu, Y., and Thundat, T.. A web of streamers: Biofilm formation in a porous microfluidic device. Lab on a Chip, 12(24):51335137, 2012.
[73]Vo, G. D., Brindle, E., and Heys, J.. An experimentally validated immersed boundary model of fluid-biofilm interaction. Water Sci. Technol., 61(12):30333040, 2010.
[74]Vo, G. D. and Heys, J.. Biofilm deformation in response to fluid flow in capillaries. Biotechnol. Bioeng., 108(8):18931899, 2011.
[75]Voller, V. R.. Basic Control Volume Finite Element Methods for Fluids and Solids. World Scientific, Singapore, 2009.
[76]Wang, Q. and Zhang, T.. Review of mathematical models for biofilms. Solid State Commun., 150(21-22):10091022, 2010.
[77]Wanner, O. and Gujer, W.. A multispecies biofilm model. Biotechnol. Bioeng., 28(3):314328, 1986.
[78]Wiens, J. K. and Stockie, J. M.. An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. J. Comput. Phys., 281:917941, 2015.
[79]Williams, H. A. R., Fauci, L. J., and Gaver, D. P.. Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Disc. Contin. Dyn. Syst. B, 11(2):519540, 2009.
[80]Wimpenny, J. W. T. and Colasanti, R.. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol., 22(1):116, 1997.
[81]Xavier, J. D. B., Picioreanu, C., and van Loosdrecht, M. C.M.. A general description of detachment for multidimensional modelling of biofilms. Biotechnol. Bioeng., 91(6):651669, 2005.
[82]Xu, J., Sudarsan, R., Darlington, G. A., and Eberl, H. J.. A computational study of external shear forces in biofilm clusters. In 22nd International Symposium on High Performance Computing Systems and Applications, pages 139–145, Québec, Canada, 2008. IEEE.
[83]Yatomi, M., Bettinson, A. D., O’dowd, N. P., and K. M. Nikbin, . Modelling of damage development and failure in notched-bar multiaxial creep tests. Fatigue Fract. Eng. M., 27(4):283295, 2004.
[84]Zhang, T., Cogan, N., and Wang, Q.. Phase-field models for biofilms. II. 2-D numerical simulations of biofilm-flow interaction. Commun. Comput. Phys., 4(1):72101, 2008.
[85]Zhao, P. and Heinrich, J. C.. Front-tracking finite element method for dendritic solidification. J. Comput. Phys., 173(2):765796, 2001.

Keywords

MSC classification

Simulating Biofilm Deformation and Detachment with the Immersed Boundary Method

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed