[1]
Balsara, D.S., Riemann solver for relativistic hydrodynamics, J. Comput. Phys., 114:284–297, 1994.

[2]
Bassi, F. and Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131:267–279, 1997.

[3]
Biswas, R., Devine, K.D., and Flaherty, J.E., Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14:255–283, 1994.

[4]
Cockburn, B., Hu, S.C., and Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comp., 54:545–581, 1990.

[5]
Cockburn, B., Li, F.Y., and Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comput. Phys., 194:588–610, 2004.

[6]
Cockburn, B., Lin, S.Y., and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84:90–113, 1989.

[7]
Cockburn, B. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite elementmethod for conservation laws II: general framework, Math. Comp., 52:411–435, 1989.

[8]
Cockburn, B. and Shu, C.-W., The Runge-Kutta local projection *P*
^{1}-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér., 25:337–361, 1991.

[9]
Cockburn, B. and Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35:2440–2463, 1998.

[10]
Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141:199–224, 1998.

[11]
Cockburn, B. and Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16:173–261, 2001.

[12]
Dai, W.L. and Woodward, P.R., An iterative Riemann solver for relativistic hydrodynamics, SIAM J. Sci. Comput., 18:982–995, 1997.

[13]
Dolezal, A. and Wong, S.S.M., Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 120:266–277, 1995.

[14]
Donat, R., Font, J.A., Ibáñez, J.M., and Marquina, A., A flux-split algorithm applied to relativistic flows, J. Comput. Phys., 146:58–81, 1998.

[15]
Duncan, G.C. and Hughes, P.A., Simulations of relativistic extragalactic jets, Astrophys. J., 436:L119–L122, 1994.

[16]
Eulderink, F. and Mellema, G., General relativistic hydrodynamics with a Roe solver, Astrophys. J. Suppl. S., 110:587–623, 1995.

[17]
Falle, S.A.E.G. and Komissarov, S.S., An upwind numerical scheme for relativistic hydrodynamics with a general equation of state, Mon. Not. R. Astron. Soc., 278:586–602, 1996.

[18]
He, P. and Tang, H.Z., An adaptive moving mesh method for two-dimensional relativistic hydrodynamics, Commun. Comput. Phys., 11:114–146, 2012.

[19]
Hu, C.Q. and Shu, C.-W., A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21:666–690, 1999.

[20]
Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226:879–896, 2007.

[21]
Kunik, M., Qamar, S., and Warnecke, G., Kinetic schemes for the relativistic gas dynamics, Numer. Math., 97:159–191, 2004.

[22]
Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Pergaman Press, 2nd edition, 1987.

[23]
Lepsky, O., Hu, C.Q., and Shu, C.-W., Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Appl. Numer. Math., 33:423–434, 2000.

[24]
Li, F.Y. and Xu, L.W., Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys., 231:2655–2675, 2012.

[25]
Li, F.Y., Xu, L.W., and Yakovlev, S., Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys., 230:4828–4847, 2011.

[26]
Li, F.Y. and Yakovlev, S., A central discontinuous Galerkin method for Hamilton-Jacobi equations, J. Sci. Comput., 45:404–428, 2010.

[27]
Liu, Y.J., Central schemes on overlapping cells, J. Comput. Phys., 209:82–104, 2005.

[28]
Liu, Y.J., Shu, C.-W., Tadmor, E., and Zhang, M.P., Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction, SIAM J. Numer. Anal., 45:2442–2467, 2007.

[29]
Liu, Y.J., Shu, C.-W., Tadmor, E., and Zhang, M.P.,
*L*
^{2} stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal., 42:593–607, 2008.

[30]
Liu, Y., Shu, C.-W., Tadmor, E. and Zhang, M., Central local discontinuous Galerkin methods on overlapping cells for diffusion equations, ESAIM Math. Model. Numer. Anal., 45:009–1032, 2011.

[31]
Martí, J.M. and Müller, E., Numerical hydrodynamics in special relativity, Living Rev. Relativity, 6:1–100, 2003.

[32]
May, M.M. and White, R.H., Hydrodynamic calculations of general-relativistic collapse, Phys. Rev., 141:1232–1241, 1966.

[33]
May, M.M. and White, R.H., Stellar dynamics and gravitational collapse, in Methods in Computational Physics, Vol. 7, Astrophysics (Alder, B., Fernbach, S., and Rotenberg, M. eds.), Academic Press, 219–258, 1967.

[34]
Mignone, A. and Bodo, G., An HLLC Riemann solver for relativistic flows I. hydrodynamics, Mon. Not. R. Astron. Soc., 364:126–136, 2005.

[35]
Mignone, A., Plewa, T., and Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, Astrophys. J. Suppl. S., 160:199–219, 2005.

[36]
Qin, T., Shu, C.-W. and Yang, Y., Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics, J. Comput. Phys., 315:323–347, 2016.

[37]
Qiu, J.X. and Shu, C.-W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26:907–929, 2005.

[38]
Reed, W.H. and Hill, T.R., Triangular mesh methods for neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

[39]
Remacle, J.-F., Flaherty, J.E., and Shephard, M.S., An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev., 45:53–72, 2003.

[40]
Reyna, M.A. and Li, F., Operator bounds and time step conditions for DG and central DG methods, J. Sci. Comput., 62:532–554, 2015.

[41]
Schneider, V., Katscher, U., Rischke, D.H., Waldhauser, B., Maruhn, J.A., and Munz, C.D., New algorithms for ultra-relativistic numerical hydrodynamics, J. Comput. Phys., 105:92–107, 1993.

[42]
Shao, S.H. and Tang, H.Z., Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model, Discrete Contin. Dyn. Syst. Ser. B, 6:623–640, 2006.

[43]
Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51(2009), 82–126.

[44]
Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77:439–471, 1988.

[45]
Tang, H.Z. and Warnecke, G., A Runge-Kutta discontinuous Galerkin method for the Euler equations, Computers & Fluids, 34:375–398, 2005.

[46]
van Odyck, D. E. A., Review of numerical special relativistic hydrodynamics, Int. J. Numer. Meth. Fluids, 44:861–884, 2004.

[47]
Wilson, J.R., Numerical study of fluid flow in a Kerr space, Astrophys. J., 173:431–438, 1972.

[48]
Wu, K.L. and Tang, H.Z., Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics, J. Comput. Phys., 256:277–307, 2014.

[49]
Wu, K.L. and Tang, H.Z., A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics, SIAM J. Sci. Comput., 38:B458–B489, 2016.

[50]
Wu, K.L. and Tang, H.Z., High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics, J. Comput. Phys., 298:539–564, 2015.

[51]
Wu, K.L. and Tang, H.Z., Admissible states and physical constraints preserving numerical schemes for special relativistic magnetohydrodynamics, *arXiv:1603.06660*, 2016.

[52]
Wu, K.L. and Tang, H.Z., Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state, Astrophys. J. Suppl. Ser., 228(1), 2017, 3.

[53]
Wu, K.L., Yang, Z.C., and Tang, H.Z., A third-order accurate direct Eulerian GRP scheme for one-dimensional relativistic hydrodynamics, East Asian J. Appl. Math., 4:95–131, 2014.

[54]
Wu, K.L., Yang, Z.C., and Tang, H.Z., A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics, J. Comput. Phys., 264:177–208, 2014.

[55]
Yang, J.Y., Chen, M.H., Tsai, I.N., and Chang, J.W., A kinetic beam scheme for relativistic gas dynamics, J. Comput. Phys., 136:19–40, 1997.

[56]
Yang, Z.C., He, P., and Tang, H.Z., A direct Eulerian GRP scheme for relativistic hydrodynamics: one-dimensional case, J. Comput. Phys., 230:7964–7987, 2011.

[57]
Yang, Z.C. and Tang, H.Z., A direct Eulerian GRP scheme for relativistic hydrodynamics: two-dimensional case, J. Comput. Phys., 231:2116–2139, 2012.

[58]
Del Zanna, L. and Bucciantini, N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows I: Hydrodynamics, Astron. Astrophys., 390:1177–1186, 2002.

[59]
Zhang, M.P. and Shu, C.-W., An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations, Math. Models Meth. Appl. Sci., 13:395–413, 2003.

[60]
Zhang, M.P. and Shu, C.-W., An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods, Computers & Fluids, 34:581–592, 2005.

[61]
Zhao, J., He, P., and Tang, H.Z., Steger-Warming flux vector splitting method for special relativistic hydrodynamics, Math. Meth. Appl. Sci., 37:1003–1018, 2014.

[62]
Zhao, J. and Tang, H.Z., Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics, J. Comput. Phys., 24:138–168, 2013.

[63]
Zhao, J. and Tang, H.Z., Runge-Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics, *arXiv: 1610.03404*, 2016.

[64]
Zhu, J. and Qiu, J.X., Runge-Kutta discontinuous Galerkin method using WENO-type limiters: three-dimensional unstructured meshes, Commun. Comput. Phys., 11:985–1005, 2012.

[65]
Zhu, J., Qiu, J.X., Shu, C.-W., and Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys., 227:4330–4353, 2008.