Skip to main content Accessibility help
Hostname: page-component-78dcdb465f-mrc2z Total loading time: 0.434 Render date: 2021-04-15T17:17:39.370Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Review of Feynman’s Path Integral in Quantum Statistics: from the Molecular Schrödinger Equation to Kleinert’s Variational Perturbation Theory

Published online by Cambridge University Press:  03 June 2015

Kin-Yiu Wong
Department of Physics, High Performance Cluster Computing Centre, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong Institute of Research and Continuing Education, Hong Kong Baptist University (Shenzhen)


Feynman’s path integral reformulates the quantum Schrödinger differential equation to be an integral equation. It has been being widely used to compute internuclear quantum-statistical effects on many-body molecular systems. In this Review, the molecular Schrödinger equation will first be introduced, together with the Born-Oppenheimer approximation that decouples electronic and internuclear motions. Some effective semiclassical potentials, e.g., centroid potential, which are all formulated in terms of Feynman’s path integral, will be discussed and compared. These semiclassical potentials can be used to directly calculate the quantum canonical partition function without individual Schrödinger’s energy eigenvalues. As a result, path integrations are conventionally performed with Monte Carlo and molecular dynamics sampling techniques. To complement these techniques, we will examine how Kleinert’s variational perturbation (KP) theory can provide a complete theoretical foundation for developing non-sampling/non-stochastic methods to systematically calculate centroid potential. To enable the powerful KP theory to be practical for many-body molecular systems, we have proposed a new path-integral method: automated integration-free path-integral (AIF-PI) method. Due to the integration-free and computationally inexpensive characteristics of our AIF-PI method, we have used it to perform ab initio path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related phosphoryl-transfer chemical reactions. The computational procedure of using our AIF-PI method, along with the features of our new centroid path-integral theory at the minimum of the absolute-zero energy (AMAZE), are also highlighted in this review.

Review Article
Copyright © Global Science Press Limited 2014


[1]Kleppner, D., Jackiw, R., Pathways of discovery: One hundred years of quantum physics, Science, 289 (2000) 893898.CrossRefGoogle Scholar
[2]Gutzwiller, M.C., Resource letter ICQM-1: The interplay between classical and quantum mechanics, Am. J. Phys., 1998, pp. 304324.CrossRefGoogle Scholar
[3]Tanner, G., Richter, K., Rost, J.-M., The theory of two-electron atoms: between ground state and complete fragmentation, Rev. Mod. Phys., 72 (2000) 497544.CrossRefGoogle Scholar
[4]Kohn, W., Nobel lecture: Electronic structure of matter-wave functions and density function-als, Rev. Mod. Phys., 71 (1999) 12531266.CrossRefGoogle Scholar
[5]Pople, J.A., Nobel lecture: Quantum chemical models, Rev. Mod. Phys., 71 (1999) 12671274.CrossRefGoogle Scholar
[6]Dirac, P.A.M., Quantum mechanics of many-electron systems, Proc. R. Soc. London A, A123 (1929) 714733.CrossRefGoogle Scholar
[7]Lewis, G.N., The chemical bond, J. Chem. Phys., 1 (1933) 1728.CrossRefGoogle Scholar
[8]Hund, F., The History of Quantum Theory, Harrap, London, 1974.Google Scholar
[9]Weinberger, P., Revisiting Louis de Broglie’s famous 1924 paper in the Philosophical Magazine, Philosophical Magazine Letters, 86 (2006) 405410.CrossRefGoogle Scholar
[10]de Broglie, L., Tentative theory of light quanta, Philosophical Magazine Letters, 2006, pp. 411423.CrossRefGoogle Scholar
[11]de Broglie, L.Recherches sur la théorie des quanta (Researches on the quantum theory); PhD Thesis, Paris, 1924.Google Scholar
[12]Schrödinger, E., Undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28 (1926) 104970.CrossRefGoogle Scholar
[13]Schrödinger, E., Quantisation as a problem of proper values (Part III): Perturbation theory, with application to the Stark effect of the Balmer lines, Annalen der Physik, 1926, pp. 437476.CrossRefGoogle Scholar
[14]Heisenberg, W., The Physical Principles of the Quantum Theory, Dover Publications, New York, 1949. Translated into English by Eckart, C. and Hoyt, F.C.Google Scholar
[15]Heisenberg, W., Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik (The Physical Content of Quantum Kinematics and Mechanics), Zeitschrift für Physik, 1927, pp. 172198. English translation: Wheeler, J. A. and Zurek, H., Quantum Theory and Measurement, Princeton Univ. Press, 1983, pp. 6284. CrossRefGoogle Scholar
[16]Heisenberg, W., Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen (Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations), Zeitschrift für Physik, 1925, pp. 879893.CrossRefGoogle Scholar
[17]Born, M., Jordan, P., Zur Quantenmechanik (On Quantum Mechanics), Zeitschrift für Physik, 1925, pp. 858888.CrossRefGoogle Scholar
[18]Born, M., Heisenberg, W., Jordan, P., Zur Quantenmechanik II (On Quantum Mechanics II), Zeitschrift für Physik, 1925, pp. 557615.Google Scholar
[19]Born, M., Oppenheimer, J.R., Zur Quantentheorie der Molekeln (On the Quantum Theory of Molecules), Annalen der Physik, 1927, pp. 457484.CrossRefGoogle Scholar
[20]Schrödinger, E., Collected Papers on Wave Mechanics: Together with His Four Lectures on Wave Mechanics, 3rd ed., Chelsea Publishing, New York, 1982.Google Scholar
[21]van der Waerden, B.L., Sourcesof Quantum Mechanics, Dover Publications, New York, 1968, pp. xi, 430 p.Google Scholar
[22]Wheeler, J.A., Zurek, W.H., Quantum Theory and Measurement, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1983, pp. xxviii, 811 p.Google Scholar
[23]Mehra, J., Rechenberg, H., The historical development of quantum theory, Springer-Verlag, New York, 19822001.Google Scholar
[24]Hettema, H., Quantum chemistry: Classic scientific papers, World scientific series in 20th century chemistry; Vol. 8, World Scientific, Singapore; London, 2000, pp. xxxix, 478 p.Google Scholar
[25]Szabo, A., Ostlund, N.S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 2nd ed., Dover Publications, Mineola, N.Y., 1996.Google Scholar
[26]Springborg, M., Methods of Electronic-Structure Calculations: From Molecules to Solids, Wiley, Chichester; New York, 2000.Google Scholar
[27]Hehre, W.J., Radom, L., Schleyer, P.v.R., Pople, J.A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.Google Scholar
[28]Dean, D.J., Beyond the nuclear shell model, Physics Today, 60 (2007) 4853.CrossRefGoogle Scholar
[29]Helgaker, T., Jørgensen, P., Olsen, J., Molecular electronic-structure theory, Wiley, Chichester; New York, 2000.CrossRefGoogle Scholar
[30]Cohen, E.R., Cvitaš, T., Frey, J.G., Holmström, B., Kuchitsu, K., Marquardt, R., Mills, I., Pavese, F., Quack, M., Stohner, J., Strauss, H., Takami, M., Thor, A.J., Quantities, Units and Symbols in Physical Chemistry, 3rd ed., Royal Society of Chemistry, Cambridge, 2007.CrossRefGoogle Scholar
[31]McQuarrie, D.A., Statistical Mechanics, University Science Books,Sausalito, Calif., 2000.Google Scholar
[32]Feynman, R.P., Hibbs, A.R., Styer, D.F., Quantum Mechanics and Path Integrals, Emended ed., Dover Publications, Mineola, N.Y., 2005.Google Scholar
[33]Feynman, R.P., Statistical Mechanics; a Set of Lectures, Benjamin, W. A., Reading, Mass., 1972.Google Scholar
[34]Kleinert, H., Path Integralsin Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed., World Scientific, Singapore; River Edge, NJ, 2004.CrossRefGoogle Scholar
[35]Ballhausen, C.J., Hansen, A.E., Electronic spectra, Annu. Rev. Phys. Chem., 23 (1972) 1538.CrossRefGoogle Scholar
[36]Kolos, W., Adiabatic approximation and its accuracy, Adv. Quantum Chem., 5 (1970) 99133.CrossRefGoogle Scholar
[37]Hirschfelder, J.O., Meath, W.J., Nature of intermolecular forces, Adv. Chem. Phys., 12 (1967) 3106.Google Scholar
[38]Mielke, S.L., Peterson, K.A., Schwenke, D.W., Garrett, B.C., Truhlar, D.G., Michael, J.V., Su, M.-C., Sutherland, J.W., H+H2 Thermal Reaction: A Convergence of Theory and Experiment, Phys. Rev. Lett., 91 (2003) 063201.CrossRefGoogle ScholarPubMed
[39]Parr, R.G., Yang, W., Density-Functional Theory of Atoms and Molecules, Oxford University Press; Clarendon Press, New York; Oxford, UK, 1989.Google Scholar
[40]Wong, K.-Y., Lee, T.-S., York, D.M., Active participation of the Mg2+ ion in the reaction coordinate of RNA self-cleavage catalyzed by the hammerhead ribozyme, J. Chem. Theory Comput., 2011, pp. 13.CrossRefGoogle Scholar
[41]Wong, K.-Y., Gao, J., Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations, FEBS Journal, 278 (2011) 25792595.CrossRefGoogle ScholarPubMed
[42]Wong, K.-Y., Gao, J., The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations, Biochemistry, 46 (2007) 1335213369.CrossRefGoogle ScholarPubMed
[43]Wu, E.L., Wong, K.-Y., Zhang, X., Han, K., Gao, J., Determination of the structure form of the fourth ligand of zinc in acutolysin A using combined quantum mechanical and molecular mechanical simulation, J. Phys. Chem. B, 113 (2009) 24772485.CrossRefGoogle ScholarPubMed
[44]Wong, K.Y., Smallfield, J.A.O., Fahlman, M., Epstein, A.J., Electronic state of nitrogen containing polypyridine at the interfaces with model sulfonic acid containing polymer and molecule, Synth. Met., 137 (2003) 10311032.CrossRefGoogle Scholar
[45]Wong, K.Y., Lo, C.F., Sham, W.Y., Fong, H.H., So, S.K., Leung, L.M., Theoretical investigation of a blue hydroxyquinaldine-based aluminum(III) complex, Phys. Lett. A, 321 (2004) 194198.CrossRefGoogle Scholar
[46]Hagler, A.T., Huler, E., Lifson, S., Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals, J. Am. Chem. Soc., 96 (1974) 53195327.CrossRefGoogle ScholarPubMed
[47]Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4 (1983) 187217.Google Scholar
[48]Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr., Weiner, P., A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 106 (1984) 765784.CrossRefGoogle Scholar
[49]Jorgensen, W.L., Tirado-Rives, J., The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and cram-bin, J. Am. Chem. Soc., 110 (1988) 16571666.Google ScholarPubMed
[50]Mayo, S.L., Olafson, B.D., Goddard, W.A., III, DREIDING: A generic force field for molecular simulations, J. Phys. Chem., 94 (1990) 88978909.Google Scholar
[51]Gao, J., Truhlar, D.G., Quantum mechanical methods for enzyme kinetics, Annu. Rev. Phys. Chem., 53 (2002) 467505.CrossRefGoogle ScholarPubMed
[52]Field, M.J., Bash, P.A., Karplus, M., A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations, J. Comput. Chem., 11 (1990) 700733.CrossRefGoogle Scholar
[53]Wong, K.-Y., York, D.M., Exact relation between potential of mean force and free-energy profile, J. Chem. Theory Comput., 8 (2012) 39984003.CrossRefGoogle ScholarPubMed
[54]Tanaka, H., Kanoh, H., Yudasaka, M., Iijima, S., Kaneko, K., Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns, J. Am. Chem. Soc., 127 (2005) 75117516.CrossRefGoogle ScholarPubMed
[55]Kowalczyk, P., Gauden, P.A., Terzyk, A.P., Bhatia, S.K., Thermodynamics of Hydrogen adsorption in slit-like carbon nanopores at 77K. Classical versus path-integral Monte Carlo simulations, Langmuir, 23 (2007) 36663672.Google Scholar
[56]Kowalczyk, P., Gauden, P.A., Terzyk, A.P., Cryogenic Separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: Insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores, J. Phys. Chem. B, 112 (2008) 82758284.CrossRefGoogle ScholarPubMed
[57]Gao, J., Major, D.T., Fan, Y., Lin, Y.-l., Ma, S., Wong, K.-Y., Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes, in: Kukol, A. (Ed.), Molecular Modeling of Proteins, Humana Press, 2008, pp. 3762.CrossRefGoogle Scholar
[58]Major, D.T., Heroux, A., Orville, A.M., Valley, M.P., Fitzpatrick, P.F., Gao, J., Differential quantum tunneling contributions in nitroalkane oxidase catalyzed and the uncatalyzed proton transfer reaction, Proc. Natl. Acad. Sci. U.S.A., 106 (2009) 2073420739.CrossRefGoogle ScholarPubMed
[59]Warshel, A., Olsson, M.H.M., Villa-Freixa, J., Computer simulations of isotope effects in enzyme catalysis, in: Kohen, A., Limbach, H.-H. (Eds.), Isotope Effects in Chemistry and Biology, Taylor & Francis, Boca Raton, 2006, pp. 621644.Google Scholar
[60]Brown, L.M., Feynmanʹs Thesis: A New Approach to Quantum Theory, World Scientific, Singapore; Hackensack, NJ, 2005.CrossRefGoogle Scholar
[61]Feynman, R.P., Space-time approachtonon-relativistic quantum mechanics, Rev. Mod. Phys., 20 (1948) 367387.CrossRefGoogle Scholar
[62]Feynman, R.P., The development of the space-time view of quantum electrodynamics, Science, 153 (1966) 699708.CrossRefGoogle ScholarPubMed
[63]Kac, M., Probability and related Topics in Physical Sciences, Interscience Publishers, London; New York, 1959 Chapter IV.Google Scholar
[64]Kac, M., On distributions of certain Wiener functionals, Transactions of the American Mathematical Society, 65 (1949) 113.CrossRefGoogle Scholar
[65]Shankar, R., Principles of Quantum Mechanics, 2nd ed., Plenum Press, New York, 1994.CrossRefGoogle Scholar
[66]Chaichian, M., Demichev, A.P., Path Integrals in Physics, Philadelphia, PA, Bristol, UK, 2001.CrossRefGoogle Scholar
[67]Schulman, L.S., Techniques and Applications of Path Integration, Wiley, New York, 1981.Google Scholar
[68]Dirac, P.A.M., The Principles of Quantum Mechanics, 4th ed., Clarendon Press, Oxford, England, 1981.Google Scholar
[69]Dirac, P.A.M., The Lagrangian in quantum mechanics, Physikalische Zeitschrift der Sowjetunion, 1933, pp. 6472.Google Scholar
[70]Putz, M.V., Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems, Int. J. Mol. Sci., 10 (2009) 48164940.Google ScholarPubMed
[71]Putz, M.V., On Heisenberg Uncertainty Relationship, its extension, and the quantum issue of wave-particle duality, Int. J. Mol. Sci., 11 (2010) 41244139.Google ScholarPubMed
[72]Kleinert, H., Pelster, A., Putz, M.V., Variational perturbation theory for Markov processes, Phys. Rev. E, 65 (2002) 066128/1-066128/7.CrossRefGoogle ScholarPubMed
[73]Putz, M.V., Markovian approach of the electron localization functions, Int. J. Quantum Chem., 105 (2005) 111.CrossRefGoogle Scholar
[74]Putz, M.V., Semiclassical electronegativity and chemical hardness, J. Theor. Comput. Chem., 6 (2007) 3347.CrossRefGoogle Scholar
[75]Putz, M.V., Russo, N., Sicilia, E., About the Mulliken electronegativity in DFT, Theor. Chem. Acct., 114 (2005) 3845.CrossRefGoogle Scholar
[76]Goldstein, H., Poole, C.P., Safko, J.L., Classical Mechanics, 3rd ed., Addison Wesley, San Francisco, 2002.Google Scholar
[77]Wigner, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932) 749759.CrossRefGoogle Scholar
[78]Neumann, M., Zoppi, M., Asymptotic expansions and effective potentials for almost classical N-body systems, Phys. Rev. A, 40 (1989) 457284.CrossRefGoogle ScholarPubMed
[79]Hillery, M., ƠConnell, R.F., Scully, M.O., Wigner, E.P., Distribution functions in physics: fundamentals, Phys. Rep., 106 (1984) 121167.CrossRefGoogle Scholar
[80]Kirkwood, J.G., Quantum statistics of almost classical assemblies, Phys. Rev., 44 (1933) 3137.CrossRefGoogle Scholar
[81]Fujiwara, Y., Osborn, T.A., Wilk, S.F.J., Wigner-Kirkwood expansions, Phys. Rev. A, 25 (1982) 14.CrossRefGoogle Scholar
[82]Hornstein, S.M., Miller, W.H., Quantum corrections (within the classic path approximation) to the Boltzmann density matrix, Chem. Phys. Lett., 13 (1972) 298300.CrossRefGoogle Scholar
[83]Miller, W.H., Improved classical path approximation for the Boltzmann density matrix, J. Chem. Phys., 58 (1973) 16641667.CrossRefGoogle Scholar
[84]Gillan, M.J., Quantum simulation of hydrogen in metals, Phys. Rev. Lett., 58 (1987) 5636.CrossRefGoogle ScholarPubMed
[85]Gillan, M.J., Quantum-classical crossover of the transition rate in the damped double well, Journal of Physics C: Solid State Physics, 20 (1987) 36213641.CrossRefGoogle Scholar
[86]Voth, G.A., Feynman path integral formulation of quantum mechanical transition-state theory, J. Phys. Chem., 97 (1993) 83658377.CrossRefGoogle Scholar
[87]Cao, J., Voth, G.A., The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics, J. Chem. Phys., 101 (1994) 616883.CrossRefGoogle Scholar
[88]Voth, G.A., Path-integral centroid methods in quantum statistical mechanics and dynamics, Adv. Chem. Phys., 93 (1996) 135218.Google Scholar
[89]Ramírez, R., Loópez-Ciudad, T., Noya, J.C., Feynman effective classical potential in the Schrödinger formulation, Phys. Rev. Lett., 1998, pp. 33033306. Comment: Andronico, G.; Branchina, V.; Zappala, Phys, D. Rev. Lett. 2002, 88, 178901; Reply to comment: Ramirez, R.; López-Ciudad, Phys, T. Rev. Lett., 2002, 88, 178902.CrossRefGoogle Scholar
[90]Zwanzig, R.W., High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys., 22 (1954) 14201426.CrossRefGoogle Scholar
[91]Kubo, R., Generalized cumulant expansion method, J. Phys. Soc. Jpn., 17 (1962) 11001120.CrossRefGoogle Scholar
[92]Ramírez, R., Loópez-Ciudad, T., The Schrödinger formulation of the Feynman path centroid density, J. Chem. Phys., 111 (1999) 33393348.CrossRefGoogle Scholar
[93]Steinfeld, J.I., Francisco, J.S., Hase, W.L., Chemical Kinetics and Dynamics, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 1999.Google Scholar
[94]Kreevoy, M.M., Truhlar, D.G., Transition state theory, in: Bernasconi, C.F. (Ed.), Techniques of Chemistry: Investigation of Rates and Mechanisms of Reactions, Wiley, New York, 1986, pp. 1395.Google Scholar
[95]Garrett, B.C., Perspective on ˝the transition state method˝, Theor. Chem. Acct., 103 (2000) 200204.CrossRefGoogle Scholar
[96]Petersson, G.A., Perspective on ˝The activated complex in chemical reactions˝, Theor. Chem. Acct., 103 (2000) 190195.CrossRefGoogle Scholar
[97]Truhlar, D.G., Hase, W.L., Hynes, J.T., Current status of transition-state theory, J. Phys. Chem., 87 (1983) 266482.CrossRefGoogle Scholar
[98]Truhlar, D.G., Garrett, B.C., Klippenstein, S.J., Current status of transition-state theory, J. Phys. Chem., 100 (1996) 1277112800.CrossRefGoogle Scholar
[99]Eyring, H., Activated complex in chemical reactions, J. Chem. Phys., 3 (1935) 10715.CrossRefGoogle Scholar
[100]Kassel, L.S., Statistical mechanical treatment of the activated complex in chemical reactions, J. Chem. Phys., 3 (1935) 399400.CrossRefGoogle Scholar
[101]Evans, M.G., Polanyi, M., Application of the transition-state method to the calculation of reaction velocities, especially in solution, Transactions of the Faraday Society, 31 (1935) 87594.CrossRefGoogle Scholar
[102]Wigner, E., The transition-state method, Transactions of the Faraday Society, 34 (1938) 2941.CrossRefGoogle Scholar
[103]Eyring, H., Stearn, A.E., The application of the theory of absolute reaction rates to proteins, Chem. Rev., 24 (1939) 25370.CrossRefGoogle Scholar
[104]Glasstone, S., Laidler, K.J.,H. Eyring, , The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, 1st ed., McGraw-Hill Book Company, Inc., New York; London, 1941.Google Scholar
[105]Griffiths, D.J., Introduction to Quantum Mechanics, Prentice Hall, Englewood Cliffs, N.J., 1995.Google Scholar
[106]Bell, R.P., Tunnel-effect correction for parabolic potential barriers, Transactions of the Faraday Society, 55 (1959) 14.CrossRefGoogle Scholar
[107]Bell, R.P., The Tunnel Effect in Chemistry, Chapman and Hall, London; New York, 1980.CrossRefGoogle Scholar
[108]Johnston, H.S., Gas Phase Reaction Rate Theory, Ronald Press Co., New York, 1966.Google Scholar
[109]Johnston, H.S., Rapp, D., Large tunnelling corrections in chemical reaction rates. II, J. Am. Chem. Soc., 83 (1961) 19.CrossRefGoogle Scholar
[110]Voth, G.A., Chandler, D., Miller, W.H., Rigorous formulation of quantum transition state theory and its dynamical corrections, J. Chem. Phys., 91 (1989) 774960.CrossRefGoogle Scholar
[111]Jang, S., Schwieters, C.D., Voth, G.A., A modification of path integral quantum transition state theory for asymmetric and metastable potentials, J. Phys. Chem. A, 103 (1999) 95279538.CrossRefGoogle Scholar
[112]Jang, S., Voth, G.A., A relationship between centroid dynamics and path integral quantum transition state theory, J. Chem. Phys., 2000, pp. 87478757.CrossRefGoogle Scholar
[113]Yeon, K.H., Zhang, S., Kim, Y.D., Um, C.I., George, T.F., Quantum solutions for the harmonic-parabola potential system, Phys. Rev. A, 61 (2000) 042103/1-042103/15.CrossRefGoogle Scholar
[114]Marx, D., Parrinello, M., Structural quantum effects and three-center two-electron bonding in CH5+, Nature (London), 375 (1995) 21618.CrossRefGoogle Scholar
[115]Tuckerman, M.E., Marx, D., Parrinello, M., The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature (London), 417 (2002) 925-929.Google ScholarPubMed
[116]Tuckerman, M.E., Marx, D., Klein, M.L., Parrinello, M., On the quantum nature of the shared proton in hydrogen bonds, Science, 275 (1997) 817820.CrossRefGoogle ScholarPubMed
[117]Marx, D., Tuckerman, M.E., Martyna, G.J., Quantum dynamics via adiabaticab initio centroid molecular dynamics, Comput. Phys. Commun., 118 (1999) 166184.CrossRefGoogle Scholar
[118]Paesani, F., Iuchi, S., Voth, G.A., Quantum effects in liquid water from an ab initio-based polarizable force field, J. Chem. Phys., 127 (2007) 074506.CrossRefGoogle ScholarPubMed
[119]Ohta, Y., Ohta, K., Kinugawa, K., Ab initio centroid path integral molecular dynamics: Application to vibrational dynamics of diatomic molecular systems, J. Chem. Phys., 120 (2004) 312320.CrossRefGoogle ScholarPubMed
[120]Hayashi, A., Shiga, M., Tachikawa, M., H/D isotope effect on the dihydrogen bond of NH4+.BeH2 by ab initio path integral molecular dynamics simulation, J. Chem. Phys., 125 (2006) 204310.CrossRefGoogle Scholar
[121]Poulsen, J.A., Nyman, G., Rossky, P.J., Practical evaluation of condensed phase quantum correlation functions: A Feynman-Kleinert variational linearized path integral method, J. Chem. Phys., 119 (2003) 1217912193.CrossRefGoogle Scholar
[122]Poulsen, J.A., Nyman, G., Rossky, P.J., Feynman-Kleinert linearized path integral (FK-LPI) algorithms for quantum molecular dynamics, with application to water and He(4), J. Chem. Theory Comput., 2 (2006) 14821491.CrossRefGoogle Scholar
[123]Poulsen, J.A., Scheers, J., Nyman, G., Rossky, P.J., Quantum density fluctuations in liquid neon from linearized path-integral calculations, Phys. Rev. B, 75 (2007) 224505.CrossRefGoogle Scholar
[124]Coker, D.F., Bonella, S., Linearized nonadiabatic dynamics in the adiabatic representation, in: Micha, D.A., Burghardt, I. (Eds.), Quantum Dynamics of Complex Molecular Systems, Springer Series in Chemical Physics, Springer, New York, 2007, pp. 321342.CrossRefGoogle Scholar
[125]Gao, J., Wong, K.-Y., Major, D.T., Combined QM/MM and path integral simulations of kinetic isotope effects in the proton transfer reaction between nitroethane and acetate ion in water, J. Comput. Chem., 29 (2008) 514522.CrossRefGoogle ScholarPubMed
[126]Wang, M., Lu, Z., Yang, W., Nuclear quantum effects on an enzyme-catalyzed reaction with reaction path potential: Proton transfer in triosephosphate isomerase, J. Chem. Phys., 124 (2006) 124516.CrossRefGoogle ScholarPubMed
[127]Wang, Q., Hammes-Schiffer, S., Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes, J. Chem. Phys., 125 (2006) 184102.CrossRefGoogle ScholarPubMed
[128]Major, D.T., Gao, J., A combined quantum mechanical and molecular mechanical study of the reaction mechanism and a-amino acidity in alanine racemase, J. Am. Chem. Soc., 128 (2006) 1634516357.CrossRefGoogle Scholar
[129]Chakrabarti, N., Carrington, T., Jr., , Roux, B., Rate constants in quantum mechanical systems: A rigorous and practical path-integral formulation for computer simulations, Chem. Phys. Lett., 293 (1998) 209220.CrossRefGoogle Scholar
[130]Field, M.J., Albe, M., Bret, C., MM, F.P.-D., Thomas, A., The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials, J. Comput. Chem., 21 (2000) 10881100.3.0.CO;2-8>CrossRefGoogle Scholar
[131]Sauer, T., The Feynman path goes Monte Carlo, in: Janke, W., Pelster, A., Schmidt, H.-J., Bachmann, M. (Eds.), Fluctuating Paths and Fields: Festschrift Dedicated to Hagen Kleinert on the Occasion of His 60th Birthday, World Scientific, River Edge, NJ, 2001, pp. 2942.CrossRefGoogle Scholar
[132]Fosdick, L.D., Numerical estimation of the partition function in quantum statistics, J. Math. Phys., 3 (1962) 12511264.CrossRefGoogle Scholar
[133]Fosdick, L.D., The Monte Carlo method in quantum statistics, SIAM Rev., 10 (1968) 315328.CrossRefGoogle Scholar
[134]Morita, T., Solution of the Bloch equation for many-particle systems in terms of the path integral, J. Phys. Soc. Jpn., 35 (1973) 9804.CrossRefGoogle Scholar
[135]Barker, J.A., A quantum-statistical Monte Carlo method; path integrals with boundary conditions, J. Chem. Phys., 70 (1979) 291418.CrossRefGoogle Scholar
[136]MacKeown, P.K., Evaluation of Feynman path integrals by Monte Carlo methods, Am. J. Phys., 53 (1985) 880885.CrossRefGoogle Scholar
[137]Chandler, D., Wolynes, P.G., Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids, J. Chem. Phys., 74 (1981) 407895.CrossRefGoogle Scholar
[138]Berne, B.J., Thirumalai, D., On the simulation of quantum systems: path integral methods, Annu. Rev. Phys. Chem., 37 (1986) 401424.CrossRefGoogle Scholar
[139]Ceperley, D.M., Path integrals in the theory of condensed helium, Rev. Mod. Phys., 67 (1995) 279355.CrossRefGoogle Scholar
[140]Mielke, S.L., Truhlar, D.G., A new Fourier path integral method, a more general scheme for extrapolation, and comparison of eight path integral methods for the quantum mechanical calculation of free energies, J. Chem. Phys., 114 (2001) 621630.Google Scholar
[141]Coalson, R.D., On the connection between Fourier coefficient and Discretized Cartesian path integration, J. Chem. Phys., 85 (1986) 926936.CrossRefGoogle Scholar
[142]Cao, J., Voth, G.A., The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties, J. Chem. Phys., 100 (1994) 5093105.CrossRefGoogle Scholar
[143]Cao, J., Voth, G.A., The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamic properties, J. Chem. Phys., 100 (1994) 510618.CrossRefGoogle Scholar
[144]Cao, J., Voth, G.A., The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics, J. Chem. Phys., 101 (1994) 615767.CrossRefGoogle Scholar
[145]Cao, J., Voth, G.A., The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids, J. Chem. Phys., 101 (1994) 618492.CrossRefGoogle Scholar
[146]Anderson, J.B., Random-walk simulation of the Schrödinger equation. Hydrogen ion (H3+), J. Chem. Phys., 63 (1975) 1499503.CrossRefGoogle Scholar
[147]Lester, W.A., Salomon-Ferrer, R., Some recent developments in quantum Monte Carlo for electronic structure: Methods and application to a bio system, THEOCHEM, 771 (2006) 5154.CrossRefGoogle Scholar
[148]Grossman, J.C., Mitas, L., Efficient quantum Monte Carlo energies for molecular dynamics simulations, Phys. Rev. Lett., 94 (2005) 056403/1-056403/4.CrossRefGoogle ScholarPubMed
[149]Wagner, L.K., Bajdich, M., Mitas, L., QWalk: A quantum Monte Carlo program for electronic structure, J. Comput. Phys., 228 (2009) 33903404.CrossRefGoogle Scholar
[150]Wong, K.-Y., Richard, J.P., Gao, J., Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted alpha-methoxystyrenes and substituted acetic acids, J. Am. Chem. Soc., 131 (2009) 1396313971.CrossRefGoogle ScholarPubMed
[151]Wong, K.-Y., Gu, H., Zhang, S., Piccirilli, J.A., Harris, M.E., York, D.M., Characterization of the reaction path and transition states for RNA transphosphorylation models from theory and experiment, Angew. Chem. Int. Ed., 2012, pp. 647651.CrossRefGoogle ScholarPubMed
[152]Doll, J.D., Myers, L.E., Semiclassical Monte Carlo methods, J. Chem. Phys., 71 (1979) 28803.CrossRefGoogle Scholar
[153]Mielke, S.L., Truhlar, D.G., Displaced-points path integral method for including quantum effects in the Monte Carlo evaluation of free energies, J. Chem. Phys., 115 (2001) 652662.CrossRefGoogle Scholar
[154]Giachetti, R., Tognetti, V., Variational approach to quantum statistical mechanics of nonlinear systems with application to sine-Gordon chains, Phys. Rev. Lett., 55 (1985) 91215.CrossRefGoogle ScholarPubMed
[155]Feynman, R.P., Kleinert, H., Effective classical partition functions, Phys. Rev. A, 34 (1986) 50805084.CrossRefGoogle ScholarPubMed
[156]Wong, K.-Y., Gao, J., An automated integration-free path-integral method basedon Kleinert’s variational perturbation theory, J. Chem. Phys., 127 (2007) 211103.CrossRefGoogle Scholar
[157]Wong, K.-Y., Gao, J., Systematic approach for computing zero-point energy, quantum partition function, and tunneling effect based on Kleinertťs variational perturbation theory, J. Chem. Theory Comput., 4 (2008) 14091422.Google ScholarPubMed
[158]Wong, K.-Y.Simulating biochemical physics with computers: 1. Enzyme catalysis by phosphotriesterase and phosphodiesterase; 2. Integration-free path-integral method for quantum-statistical calculations; Ph.D. thesis, University of Minnesota (USA), Minneapolis, 2008.Google Scholar
[159]Stratt, R.M., The instantaneous normal modes of liquids, Acc. Chem. Res., 28 (1995) 2017.CrossRefGoogle Scholar
[160]Deng, Y., Ladanyi, B.M., Stratt, R.M., High-frequency vibrational energy relaxation in liquids: The foundations of instantaneous-pair theory and some generalizations, J. Chem. Phys., 117 (2002) 1075210767.CrossRefGoogle Scholar
[161]Wong, K.-Y., Developing a systematic approach for ab initio path-integral simulations, in: L. Wang (Ed.), Molecular Dynamics/Book 1 – Theoretical Developments and Applications in Nanotechnology and Energy, InTech, 2012, pp. 107132.Google Scholar
[162]Gu, H., Zhang, S., Wong, K.-Y., Radak, B. K., Dissanayake, T., Kellerman, D. L., Dai, Q., Miyagi, M., Anderson, V. E., York, D. M., Piccirilli, J. A., Harris, M. E., Experimental and computational analysis of the transition state for ribonuclease A catalyzed RNA 2′-O-transphosphorylation, Proc. Natl. Acad. Sci. U.S.A., 110, (2013), 1300213007.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 312 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Review of Feynman’s Path Integral in Quantum Statistics: from the Molecular Schrödinger Equation to Kleinert’s Variational Perturbation Theory
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Review of Feynman’s Path Integral in Quantum Statistics: from the Molecular Schrödinger Equation to Kleinert’s Variational Perturbation Theory
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Review of Feynman’s Path Integral in Quantum Statistics: from the Molecular Schrödinger Equation to Kleinert’s Variational Perturbation Theory
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *