Skip to main content Accessibility help
×
Home

Pseudo-Arclength Continuation Algorithms for Binary Rydberg-Dressed Bose-Einstein Condensates

  • Sirilak Sriburadet (a1), Y.-S. Wang (a2), C.-S. Chien (a2) and Y. Shih (a1)

Abstract

We study pseudo-arclength continuation methods for both Rydberg-dressed Bose-Einstein condensates (BEC), and binary Rydberg-dressed BEC which are governed by the Gross-Pitaevskii equations (GPEs). A divide-and-conquer technique is proposed for rescaling the range/ranges of nonlocal nonlinear term/terms, which gives enough information for choosing a proper stepsize. This guarantees that the solution curve we wish to trace can be precisely approximated. In addition, the ground state solution would successfully evolve from one peak to vortices when the affect of the rotating term is imposed. Moreover, parameter variables with different number of components are exploited in curve-tracing. The proposed methods have the advantage of tracing the ground state solution curve once to compute the contours for various values of the coefficients of the nonlocal nonlinear term/terms. Our numerical results are consistent with those published in the literatures.

Copyright

Corresponding author

*Corresponding author. Email addresses:yuijungja@yahoo.com (S. Sriburadet), wang04.wang25@msa.hinet.net (Y.-S. Wang), cschien@uch.edu.tw (C.-S. Chien), Yintzer_Shih@nchu.edu.tw (Y. Shih)

References

Hide All
[1]Cinti, F., Jain, P., Boninsegni, M., Micheli, A., Zoller, P. and Pupillo, G., Supersolid droplet crystal in a dipole-blockaded gas, Phys. Rev. Lett., 105 (2010), 135301.
[2]Saccani, S., Moroni, S. and Boninsegni, M., Phase diagram of soft-core bosons in two dimensions, Phys. Rev. B, 83 (2011), 092506.
[3]Henkel, N., Nath, R. and Pohl, T., Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett., 104 (2010), 195302.
[4]Henkel, N., Cinti, F., Jain, P., Pupillo, G. and Pohl, T., Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates, Phys. Rev. Lett., 108 (2012), 265301.
[5]Hsueh, C.-H., Lin, T.-C., Horng, T.-L. and Wu, W. C., Quantum crystals in a Rydberg-dressed Bose-Einstein condensate, Phys. Rev. A, 86 (2012), 013619.
[6]Muruganandam, P. and Adhikari, S. K., Bose-Einstein condensation dynamics in three dimension by the pseudospectral and finite-difference methods, J. Phys. B: At. Mol. Opt. Phys., 36 (2003), 25012513.
[7]Kasamatsu, K., Tsubota, M. and Ueda, M., Vortex phase diagram in rotating two-component Bose-Einstein condensates, Phys. Rev. Lett., 91 (2003), 150406.
[8]Kasamatsu, K., Tsubota, M. and Ueda, M., Structure of vortex lattice in rotating two-component Bose-Einstein condensates, Physica B, 329-333 (2003), 2324.
[9]Kasamatsu, K., Tsubota, M. and Ueda, M., Vortex states of two-component Bose-Einstein condensates with and without internal Josephson coupling, J. Low Temp. Phys., 134 (2004), 719724.
[10]Kasamatsu, K. and Tsubota, M., Vortex sheet in rotating two-component Bose-Einstein condensates, Phys. Rev. A, 79 (2009), 023606.
[11]García-Ripoll, J. J. and Pérez-García, V. M., Optimizing Schrödinger functional using Sobolev gradients: Applications to quantum mechanics and nonlinear optics, SIAM J. Sci. Comput., 23 (2001), 13161334.
[12]Bao, W. andDu, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 16741697.
[13]Bao, W., Ground states and dynamics of multi-component Bose-Einstein condensates, SIAM J. Multiscale Model. Simul., 2 (2004), 210236.
[14]Bao, W., Wang, H. and Markowich, P. A., Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005), 5788.
[15]Bao, W., Chern, I.-L. and Lim, F. Y., Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219 (2006), 836854.
[16]Bao, W. and Lim, F. Y., Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow, SIAM J. Sci. Comput., 30 (2008), 19251948.
[17]Danaila, I. and Kazemi, P., A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010), 24472467.
[18]Govaerts, W. J. F., Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000.
[19]Allgower, E. L. and Georg, K., Introduction to Numerical Continuation Methods, SIAM, Philadelphia, PA, 2003.
[20]Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987.
[21]Jepson, A. and Spence, A., Folds in solutions of two parameter systems and their calculation, Part I, SIAM J. Numer. Anal., 22 (1985), 347368.
[22]Rheinboldt, W. C., Numerical Analysis of Parametrized Nonlinear Equations, Wiley, NY, 1986.
[23]Rheinboldt, W. C., On the computation of multidimensional solution manifolds of parametrized equations, Numer. Math., 53 (1988), 165181.
[24]Chang, S.-L., Chien, C.-S. and Jeng, B.-W., Tracing the solution surface with folds of a two-parameter system, Int. J. Bifurcation and Chaos, 15 (2005), 26892700.
[25]Chang, S.-L., Chien, C.-S. and Jeng, B.-W., Computing wave functions of nonlinear Schrödinger equations: a time-independent approach, J. Comput. Phys., 226 (2007), 104130.
[26]Chang, S.-L. and Chien, C.-S., Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates, Comput. Phys. Commun., 177 (2007), 707719.
[27]Alfimov, G. L. and Zezyulin, D. A., Nonlinear modes for the Gross-Pitaevskii equation–a demonstrative computation approach, Nonlinearity, 20 (2007), 20752092.
[28]Zezyulin, D. A., Alfimov, G. L., Konotop, V. V. and Pérez-García, V. M., Control of nonlinear modes by scattering-length management in Bose-Einstein condensates, Phys. Rev. A, 76 (2007), 013621.
[29]Zezyulin, D. A., Alfimov, G. L., Konotop, V. V. and Pérez-García, V. M., Stability of excited states of a Bose-Einstein condensates in an anharmonic trap, Phys. Rev. A, 78 (2008), 013606.
[30]Chen, H.-S., Chang, S.-L.and Chien, C.-S., Spectral collocation methods using sine functions for a rotating Bose-Einstein condensation in optical lattices, J. Comput. Phys., 231 (2012), 15531569.
[31]Chang, S.-L. and Chien, C.-S., Computing multiple peak solutions for Bose-Einstein condensates in optical lattices, Comput. Phys. Commun., 180 (2009), 926947.
[32]Wang, Y.-S., Jeng, B.-W. and Chien, C.-S., A two-parameter continuation method for rotating two-component Bose-Einstein condensates in optical lattices, Commun. Comput. Phys., 13 (2013), 442460.
[33]Hsueh, C.-H., Tsai, Y.-C., Wu, K.-S., Chang, M.-S. and Wu, W. C., Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates, Phys. Rev. A, 88 (2013), 043646.
[34]Jeng, B.-W., Chien, C.-S. and Chern, I.-L., Spectral collocation and a two-level continuation scheme for dipolar Bose-Einstein condensates, J. Comput. Phys., 256 (2014), 713727.

Keywords

MSC classification

Pseudo-Arclength Continuation Algorithms for Binary Rydberg-Dressed Bose-Einstein Condensates

  • Sirilak Sriburadet (a1), Y.-S. Wang (a2), C.-S. Chien (a2) and Y. Shih (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed