Skip to main content Accessibility help

Projected Finite Elements for Systems of Reaction-Diffusion Equations on Closed Evolving Spheroidal Surfaces

  • Necibe Tuncer (a1) and Anotida Madzvamuse (a2)


The focus of this article is to present the projected finite element method for solving systems of reaction-diffusion equations on evolving closed spheroidal surfaces with applications to pattern formation. The advantages of the projected finite element method are that it is easy to implement and that it provides a conforming finite element discretization which is “logically” rectangular. Furthermore, the surface is not approximated but described exactly through the projection. The surface evolution law is incorporated into the projection operator resulting in a time-dependent operator. The time-dependent projection operator is composed of the radial projection with a Lipschitz continuous mapping. The projection operator is used to generate the surface mesh whose connectivity remains constant during the evolution of the surface. To illustrate the methodology several numerical experiments are exhibited for different surface evolution laws such as uniform isotropic (linear, logistic and exponential), anisotropic, and concentration-driven. This numerical methodology allows us to study new reaction-kinetics that only give rise to patterning in the presence of surface evolution such as the activator-activator and short-range inhibition; long-range activation.


Corresponding author

*Corresponding author. Email addresses: (N. Tuncer), (A. Madzvamuse)


Hide All
[1] Barreira, R., Elliott, C.M., and Madzvamuse, A.. The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol., 63(6):10951119, 2011.
[2] Blazakis, K., Aldasoro, C. R., Venkataraman, C., Styles, V., and Madzvamuse, A.. An optimal control approach for neutrophil cell motility. In preparation.
[3] Caginalp, G.. Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A (3), 39(11):58875896, 1989.
[4] Chaplain, M. A. J., Ganesh, M., and Graham, I. G.. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol., 42(5):387423, 2001.
[5] Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G., and Talbot, N. J.. Septin-mediated plant cell invasion by the rice blast fungus, magnaporthe oryzae. Science, 336(6088):15901595, 2012.
[6] Deckelnick, K., Dziuk, G., and Elliott, C. M.. Computation of geometric partial differential equations and mean curvature flow. Acta Numer., 14:139232, 2005.
[7] Donna, A. and Helzel, C.. A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes. SIAM J. Sci. Comput., 31(6):40664099, 2009.
[8] Dziuk, G. and Elliott, C. M.. Finite elements on evolving surfaces. IMA J. Numer. Anal., 27(2):262292, 2007.
[9] Dziuk, G. and Elliott, C. M.. Surface finite elements for parabolic equations. J. Comput. Math., 25(4):385407, 2007.
[10] Dziuk, G. and Elliott, C. M.. Surface finite elements for parabolic equations. J. Comput. Math., 25(4):385407, 2007.
[11] Dziuk, G. and Elliott, C. M.. Eulerian finite element method for parabolic PDEs on implicit surfaces. Interfaces Free Bound., 10(1):119138, 2008.
[12] Dziuk, G. and Elliott, C. M.. An Eulerian approach to transport and diffusion on evolving implicit surfaces. Comput. Vis. Sci., 13(1):1728, 2010.
[13] Dziuk, G. and Elliott, C. M.. Finite element methods for surface PDEs. Acta Numer., 22:289396, 2013.
[14] Elliott, C. M., Stinner, B., Styles, V., and Welford, R.. Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal., 31(3):786812, 2011.
[15] Gierer, A. and Meinhardt, H.. Theory of biological pattern formation. Kybernetik, 12(1):3039, 1972.
[16] Greer, J. B., Bertozzi, A. L., and Sapiro, G.. Fourth order partial differential equations on general geometries. J. Comput. Phys., 216(1):216246, 2006.
[17] Hetzer, G., Madzvamuse, A., and Shen, W.. Characterization of Turing diffusion-driven instability on evolving domains. Discrete Contin. Dyn. Syst., 32(11):39754000, 2012.
[18] Hieber, S. E. and Koumoutsakos, P.. A Lagrangian particle level set method. J. Comput. Phys., 210(1):342367, 2005.
[19] Kadirkamanathan, V., Anderson, S., Billings, S., Zhang, X., and Holmes, G.. The neutrophil's eye-view: Inference and visualisation of the chemoattractant field driving cell chemotaxis in vivo. PLoS ONE, 7(4):e35182, 2012.
[20] Kondo, S. and Asai, R.. A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature, 376(6543):765768, 1995.
[21] Lakkis, O., Madzvamuse, A., and Venkataraman, C.. Implicit–explicit timestepping with finite element approximation of reaction–diffusion systems on evolving domains. SIAM Journal on Numerical Analysis, 51(4):23092330, 2013.
[22] Lefèvre, J. and Mangin, J.-F.. A reaction-diffusion model of human brain development. PLoS Comput. Biol., 6(4):e1000749, 2010.
[23] Liaw, S. S., Yang, C. C., Liu, R. T., and Hong, J. T.. Turing model for the patterns of lady beetles. Phys. Rev. E., 64:041909, 2001.
[24] Macdonald, C. B., Merriman, B., and Ruuth, S. J.. Simple computation of reaction-diffusion processes on point clouds. Proc. Natl. Acad. Sci. USA, 110(23):92099214, 2013.
[25] Macdonald, C. B. and Ruuth, S. J.. The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput., 31(6):43304350, 2009/10.
[26] Madzvamuse, A.. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys., 214(1):239263, 2006.
[27] Madzvamuse, A., Gaffney, E. A., and Maini, P. K.. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol., 61(1):133164, 2010.
[28] Madzvamuse, A., Ndakwo, H. S., and Barreira, R.. Stability analysis of reaction-diffusion models on evolving domains: the effects of cross-diffusion. Discrete and Continuous Dynamical Systems - Series A, 34(4):21332170, 2016.
[29] Madzvamuse, A., Wathen, A. J., and Maini, P. K.. A moving grid finite element method applied to a model biological pattern generator. J. Comput. Phys., 190(2):478500, 2003.
[30] Meinhardt, H.. The Algorithmic Beauty of Sea Shells. The Virtual Laboratory. Springer-Verlag, Berlin, 1995.
[31] Meir, A. J. and Tuncer, N.. Radially projected finite elements. SIAM J. Sci. Comput., 31(3):23682385, 2009.
[32] Murray, J. D.. Mathematical biology. II, volume 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications.
[33] Osher, S. and Fedkiw, R.. Level set methods and dynamic implicit surfaces, volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.
[34] Prigogine, I. and Lefever, R.. Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys., 48:16951700, 1968.
[35] Ramms, L., Fabris, G., Windoffer, R., Schwarz, N., Springer, R., Zhou, C., Lazar, J., Stiefel, S., Hersch, N., Schnakenberg, U., Magin, T. M., Leube, R. E., Merkel, R., and Hoffmann, B.. Keratins as the main component for the mechanical integrity of keratinocytes. Proceedings of the National Academy of Sciences, 110(46):1851318518, 2013.
[36] Schnakenberg, J.. Simple chemical reaction systems with limit cycle behavior. J. Theoret. Biol., 81(3):389400, 1979.
[37] Sethian, J. A.. Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, second edition, 1999. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science.
[38] Tuncer, N.. A novel finite element discretization of domains with spheroidal geometry. Ph.D. Dissertation, Auburn University Libraries, 2007.
[39] Tuncer, N., Madzvamuse, A., and Meir, A. J.. Projected finite elements for reaction-diffusion systems on stationary closed surfaces. Applied and Numerical Mathematics, 96:4571, 2015.


MSC classification

Projected Finite Elements for Systems of Reaction-Diffusion Equations on Closed Evolving Spheroidal Surfaces

  • Necibe Tuncer (a1) and Anotida Madzvamuse (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed