Skip to main content Accessibility help
×
Home

Picard-Newton Iterative Method with Time Step Control for Multimaterial Non-Equilibrium Radiation Diffusion Problem

  • Jingyan Yue (a1) and Guangwei Yuan (a1)

Abstract

For a new nonlinear iterative method named as Picard-Newton (P-N) iterative method for the solution of the time-dependent reaction-diffusion systems, which arise in non-equilibrium radiation diffusion applications, two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented. The non-equilibrium radiation diffusion problems with flux limiter are considered, which appends pesky complexity and nonlinearity to the diffusion coefficient. Numerical results are presented to demonstrate that compared with Picard method, for a desired accuracy, significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.

Copyright

Corresponding author

Corresponding author.Email:yuan_guangwei@iapcm.ac.cn

References

Hide All
[1]Bowers, R. L. and Wilson, J. R., Numerical Modeling in Applied Physics and Astrophysics, Jones & Bartlett, Boston, 1991.
[2]Brown, P. N., Shumaker, D. E. and Woodward, C. S., Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration, J. Comp. Phys., J:204–760, 783.
[3]Eymard, R., Gallouët, T. and Herbin, R., Finite Volume Methods, Handbook of Numerical Analysis, Ciarlet, P. G., Lions, J. L. (Eds.), Vol. 7, 713–1020, 1997.
[4]Knoll, D. A., Rider, W. J. and Olson, G. L., An efficient nonlinear solution method for non-equilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transfer, 63:15–29, 1999.
[5]Knoll, D. A., Rider, W. J. and Olson, G. L., Nonlinear convergence, accuracy, and time step control in non-equilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transfer, 70:25– 36, 2001.
[6]Mousseau, V. A. and Knoll, D. A., New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion, J. Comput. Phys., 190:42–51, 2003.
[7]Mousseau, V. A. and Knoll, D. A., Temporal accuracy of the non-equilibrium radiation diffusion equations applied to two-dimensional multimaterial simulations, Nuclear Science and Enginerring, 154:174–189, 2006.
[8]Mousseau, V. A., Knoll, D. A. and Rider, W. J., Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion, J. Comp. Phys., 160:743–765, 2000.
[9]Ober, C. C. and Shadid, J. N., Studies on the accuracy of time-integration methods for the radiation-diffusion equations, J. Comp. Phys., 195:743–772, 2004.
[10]Olson, G. L., Efficient solution of multi-dimensional flux-limited non-equilibrium radiation diffusion coupled to material conduction with second-order time discretization, J. Comp. Phys., 226:1181–1195, 2007.
[11]Rider, W. J., Knoll, D. A. and Olson, G. L., A multigrid Newton-Krylov method for multidimensional equilibrium radiation diffusion, J. Comp. Phys., 152:164–191, 1999.
[12]Rider, W. J. and Knoll, D. A., Time step size selection for radiation diffusion calculations, J. Comp. Phys., 152:790–795, 1999.
[13]Sheng, Z. and Yuan, G., A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM J. Sci. Comput., 30:1341–1361, 2008.
[14]Sheng, Z., Yue, J. and Yuan, G., Monotone finite volume schemes of non-equilibrium radiation diffusion equations on distorted meshes, SIAM J. Sci. Comput., 31:2915–2934, 2009.
[15]Shestakov, A., Greenough, J. and Howell, L., Solving the radiation diffusion and energy balance equations using pseudo-transient continuation, J. Quantitative Spectroscopy Radiative Transfer, 90:1–28, 2005.
[16]Spitzer, L. and Harm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89(5):977, 1953.
[17]Yuan, G., Acceleration techniques of iterative solution methods for nonlinear parabolic equations, Annual Report of Laboratory of Computaional Physics, 366–413, 2004.
[18]Yuan, G. and Hang, X., Acceleration methods of nonlinear iteration for nonlinear parabolic equations, J. Comput. Math., 24:412–424, 2006.
[19]Yuan, G. and Sheng, Z., Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes, J. Comp. Phys., 224:1170–1189, 2007.
[20]Yuan, G., Hang, X., Sheng, Z. and Yue, J., Progressin numerical methods for radiation diffusion equations, Chinese J. Comp. Phys., 26:475–500, 2009.
[21]Yue, J., Yuan, G. and Sheng, Z., Picard-Newton iterative method for multimaterial nonequilib-rium radiation diffusion problem on distorted quadrilateral meshes, Lecture Notes in Engineering and Computer Science, The World Congress on Engineering 2009, Vol. 2, 1180–1185.

Keywords

Picard-Newton Iterative Method with Time Step Control for Multimaterial Non-Equilibrium Radiation Diffusion Problem

  • Jingyan Yue (a1) and Guangwei Yuan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed