Skip to main content Accessibility help

Parametrization of Mean Radiative Properties of Optically Thin Steady-State Plasmas and Applications

  • R. Rodriguez (a1) (a2), G. Espinosa (a1), J. M. Gil (a2), J. G. Rubiano (a1) (a2), M. A. Mendoza (a1) (a2), P. Martel (a1) (a2) and E. Minguez (a1) (a2)...


Plasma radiative properties play a pivotal role both in nuclear fusion and astrophysics. They are essential to analyze and explain experiments or observations and also in radiative-hydrodynamics simulations. Their computation requires the generation of large atomic databases and the calculation, by solving a set of rate equations, of a huge number of atomic level populations in wide ranges of plasma conditions. These facts make that, for example, radiative-hydrodynamics in-line simulations be almost infeasible. This has lead to develop analytical expressions based on the parametrization of radiative properties. However, most of them are accurate only for coronal or local thermodynamic equilibrium. In this work we present a code for the parametrization of plasma radiative properties of mono-component plasmas, in terms of plasma density and temperature, such as radiative power loss, the Planck and Rosseland mean opacities and the average ionization, which is valid for steady-state optically thin plasmas in wide ranges of plasma densities and temperatures. Furthermore, we also present some applications of this parametrization such as the analysis of the optical depth and radiative character of plasmas, the use to perform diagnostics of the electron temperature, the determination of mean radiative properties for multicomponent plasmas and the analysis of radiative cooling instabilities in some kind of experiments on high-energy density laboratory astrophysics. Finally, to ease the use of the code for the parametrization, this one has been integrated in a user interface and brief comments about it are presented.


Corresponding author



Hide All
[1]Pinna, T. and Cadwallader, L.C., Component failure rate data base for fusion applications, Fusion Eng. Des., 5152 (2000), 579-585.
[2]Bar-Shalom, A., Oreg, J. and Klapisch, M., Recent developments in the SCROLL model, J. Quant. Spectrosc. Radiat. Transfer, 65 (2000), 4355.
[3]Peyrusse, O., A superconfiguration model for broadband spectroscopy of non-LTE plasmas, J. Phys. B: At. Mol. Opt. Phys., 33 (2000), 43034321.
[4]Bar-Shalom, A., Klapisch, M. and Oreg, J., HULLAC, an integrated computer package for atomic processes in plasmas, J. Quant. Spectrosc. Radiat. Transfer, 77 (2001), 169188.
[5]Ralchenko, Yu. V. and Maron, Y., Accelerated recombination due to resonant deexcitation of metastable states, J. Quant. Spectrosc. Radiat. Transfer, 71 (2001), 609621.
[6]Faussurier, G., Blancard, C. and Berthier, E., Nonlocal thermodynamic equilibrium self-consistent average-atom for plasma physics, Phys. Rev. E, 63 (2001), 026401.
[7]Hansen, S.B., Development and application of L-shell spectroscopic modeling for plasma diagnostics, Ph.D. Thesis, University of Nevada, (2003).
[8]Bauche, J., Bauche-Arnoult, C. and Fournier, K.B., Model for computing superconfiguration temperatures in non-local-thermodynamic-equilibrium hot plasmas, Phys. Rev. E, 69 (2004), 026403.
[9]Chung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y. and Lee, R. W., FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energy Density Phys., 1 (2005), 312.
[10]Fontes, C.J., Colgan, J., Zhang, H.L. and Abdallah, J. Jr., Large-scale kinetics modeling of non-LTE plasmas, J. Quant. Spectrosc. Radiat. Transfer, 99 (2006), 175185.
[11]Pang, J. Q., Wu, Z. Q. and Yan, J., Emissivity calculations under DCA-UTA approximation for NLTE plasmas, Commun, Comput. Phys., 2 (2007), 10851094.
[12]Gao, C., Zeng, J., Li, Y., Jin, F. and Yuan, J., Versatile code DLAYZ for investigating population kinetics and radiative properties of plasmas in non-local thermodynamic equilibrium, High Energy Density Phys., 9 (2013), 583593.
[13]Frank, Y., Louzon, E., Mandelbaum, P. and Henis, Z.SEMILLAC: A new hybrid atomic model of hot dense plasmas, High Energy Density Phys., 9 (2013), 594600.
[14]Bates, D. R., Kingston, A. E. and McWirther, R.W. P., Recombination between electrons and atomic ions. I. Optically thin plasmas, Proc. R. Soc. London, Ser. A, 267 (1962),297312.
[15] R. McWhirther, W. P., Data needs, priorities and accuracies for plasma spectroscopy, Phys. Rep., 37 (1978), 165209.
[16]Post, D.E., Jensen, R.V., Tarter, C.B., Grasberger, W.H., and Lokke, W.A., Steady-state radiative cooling rates for low density, high-temperature plasmas, Atom. Data Nucl. Data, 20 (1977), 397439.
[17]Summers, H.P. and McWhirter, R.W.P., Radiativ epower loss from laboratory and astrophysical plasmas. I. Power loss from plasmas in steady-state ionisation balance, J. Phys. B: Atom. Mol. Phys., 12 (1979) 387411.
[18]Fournier, K.B., Pacella, D., May, M.J., Finkenthal, M. and Golstein, W.H., Calculation of the radiative cooling coefficient for molybdenum in a low density plasma, Nucl. Fusion, 37 (1997), 825834.
[19]Fournier, K.B., Cohen, M., May, M.J. and Goldstein, W.H., Ionization state distribution and radiative cooling rate for argon in a low density plasma, Atom. Data Nucl. Data, 70 (1998), 231254.
[20]Fournier, K.B., May, M.J., Pacella, D., Finkenthel, M., Gregory, B.C. and Goldstein, W.H., Calculation of the radiative cooling coefficient for krypton in a low density plasma, Nucl. Fusion, 40 (2000), 847863.
[21]Schure, K.M., Kosenko, D., Kaastra, J.S., Keppens, R. and Vink, J., A new radiative cooling curve based on an up-to-date plasma emission code, Astron. Astrophys. 508 (2009), 751U240.
[22]Minguez, E., Ruiz, R., Martel, P., Gil, J.M., Rubiano, J.G., Rodriguez, R., Scaling law of radiative opacities for ICF elements, Nucl. Instrum Meth A, 464 (2001), 218224.
[23]Minguez, E., Martel, P., Gil, J.M., Rubiano, J.G., Rodriguez, R., Analytical opacity formulas for ICF elements, Fusion Eng. Des., 60 (2002), 1725.
[24]Gu, M.F.The flexible atomic code, Can. J. Phys., 86 (2008), 675689.
[25]Bauche, J., Bauche-Arnoult, C., Klapisch, M., Transition arrays in the spectra of ionized atoms, Adv. At. Mol. Phys., 23 (1987), 131195.
[26]Stewart, J.C., Pyatt, K.D.Lowering of ionization potentials in plasmas, Astrophys. J., 144 (1966), 12031211.
[27]More, R. M., Atomic physics in inertial confinement fusion, Technical Report UCRL-84991, Lawrence Livermore National Laboratory, 1981.
[28]Florido, R., Rodriguez, R., Gil, J. M., Rubiano, J. G., Martel, P., Minguez, E. and Mancini, R. C., Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates, Phys. Rev. E, 80 (2009), 056402.
[29]Lotz, W., Electron-impact ionization cross sections and ionization coefficients for atoms and ions from hydrogen to calcium, Z. Phys. 216 (1968), 241247.
[30]Van Regemorter, H. V., Rate of collisional excitation in stellar atmospheres, Astrophys. J. 136 (1962), 906915.
[31]Kramers, H. A., On the theory of X-ray absorption and of the continuous X-ray spectrum, Philos. Mag. 46 (1923), 836871.
[32]Griem, H. R., Principles of plasma spectroscopy, Cambridge University Press, 1997.
[33]Rodriguez, R., Gil, J.M., Florido, R., Rubiano, J.G., Martel, P., Minguez, E., Code to calculate optical properties for plasmas in a wide range of densities, J. Phys. IV, 133 (2006), 981984.
[34]Rodriguez, R., Florido, R., Gil, J.M., Rubiano, J.G., Martel, P., Minguez, E., RAPCAL code: a computational package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature, Laser Part. Beams, 26 (2008), 433448.
[35]Rodriguez, R., Florido, R., Gil, J.M., Rubiano, J.G., Suarez, D., Martel, P., Minguez, E., Mancini RC, R.C., Collisional-Radiative calculations of optically thin and thick plasmas using the computational package ABAKO/RAPCAL. Commun. Comput. Phys., 8 (2010), 185210.
[36]Dimitrijevic, M. S. and Konjevic, N., Simple estimates for Stark-broadening of ion lines in stellar plasmas, Astron. & Astrophys., 172,(1987), 345349.
[37]Rose, S.J., Calculations of the radiative opacity of laser-produced plasmas, J. Phys. B., 25 (1992), 16671681.
[38]Rutten, R.J., Radiative Transfer in Stellar Atmospheres, Utretch University Lectures Notes 8th Edition, 2003.
[39] F.Serduke, J.D., Minguez, E., Davidson, S.J., Iglesias, C.A., WorkOp-IV summary: lessons from iron opacities, J. Quant. Spectrosc. Radiat. Transf., 65 (2000), 527541.
[40]Chung, H.K., Fournier, K.B., Lee, R.W., Non-LTE kinetics modeling of krypton ions: Calcula-tions of radiative cooling coefficients, High Energy Density Phys., 2 (2006), 715.
[41]Karzas, W.J., Latter, R., Electron radiative transitions in a Coulomb field, Astrophys. J., 6 (1961), 167212.
[42]Gil, J.M., Rodriguez, R., Florido, R., Rubiano, J.G., Mendoza, M.A., la Nuez, A. de, Espinosa, G., Martel, P., Minguez, E., Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature, J. Quant. Spectrosc. Radiat. Transfer, 125 (2013), 123138.
[43]Ryutov, D., Drake, R.P., Remington, B.A., Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J., 518 (1999), 821832.
[44]Fryxell, B., Rutter, E., Myra, E.S., Simulations of laser experiments of radiative and non-radiative shocks, High energy Density Phys., 8 (2012), 141149.
[45]Falize, E., Ravasio, A., Loupias, B., Diziere, A., Gregory, C.D., Michaut, C. et al., High-energy density laboratory astrophysics studies of accretion shocks in magnetic cataclysmic vari-ables, High energy Density Phys., 8 (2012), 14.
[46]Edens, A.D., Ditmire, T., Hansen, J.F., Edwards, M.J., Adams, R.G., Rambo, P.K. et al., Measure-ment of the decay rate of single-frequency perturbation on blast waves, Phys. Rev. Lett., 95 (2005), 244503.
[47]Osterhoff, J., Symes, D.R., Edens, A.D., Moore, A.S., Hellewell, E., Ditmire, T., Radiative shell thinning in intense laser-driven blast waves, New J. Phys., 11 (2009), 023022.
[48]Rodriguez, R., Espinosa, G., Gil, J.M., Florido, R., Rubiano, J.G., Mendoza, M.A. et al., Analysis of microscopic magnitudes of radiative blast waves launched in xenon clusters with collisional-radiative steady-state simulations, J. Quant. Spectrosc. Radiat. Transfer, 125 (2013), 6983.
[49]Drake, R.P., High-Energy-Density physics, Springer, 2005.
[50]Klapisch, M., Busquet, M., Models for the computation of opacity of mixtures, New J. Phys., 15 (2013), 015012.
[51]Rodriguez, R., Gil, J.M., Espinosa, G., Florido, R., Rubiano, J.G., Mendoza, M.A. et al., Determination and analysis of plasma parameters for simulations of radiative blast waves launched in clusters of xenon and krypton, Plasma Phys. Control. Fusion, 54 (2012), 045012.
[52]Field, G.B., Thermal instability, Astrophys. J., 142 (1965), 531567.
[53]Hunter, J.H. Jr., Thermal stability and its application to the interstellar gas, Astrophys. J., 161 (1970), 451455.
[54]Langer, S.H., Chanmugam, G., Shaviv, G., Thermal instability in accretion flows onto degenerate stars, Astrophys. J. Lett., 245 (1981), L23L26.
[55]Lynden-Bell, D., Tout, C.A., Russell lecture: Dark star formation and cooling instability, Astrophys. J. Lett., 558 (2001), 19.
[56]Vasiliev, E. O., Thermal instability in a collisionally cooled gas, Mon. Not. R. Astron. Soc., 419 (2012), 36413648.
[57]Chevalier, R.A., Imamura, J.N., Linear-analysis of an oscillatory instability of radiative shock-waves, Astrophys. J., 261 (1982), 543549.
[58]Imamura, J.N., Wolff, M., Durisen, R.H., A numerical study of the stability of radiative shocks, Astrophys. J., 276 (1984), 667676.
[59]Kimoto, P.A., Chernoff, D.F., Radiative instabilities in simulations of spherically symmetric supernova blast waves, Astrophys. J., 485 (1997), 274284.
[60]Laming, J.M., Relationship between oscillatory thermal instability and dynamical thin-shell overstability, Phys. Rev. E, 70 (2004), 057402.
[61]Ramachandran, B., Smith, M.D., The influence of the Mach number on the stability of radiative shocks, Mon. Not. R. Astron. Soc. 366 (2006), 586608.
[62]Hohenberger, M., Symes, D.R., Lazarus, J., Doyle, H.W., Carley, R.E., Moore, A.S. et al., Observation of a velocity domain cooling instability in a radiative shock, Phys. Rev. Lett., 20 (2010), 205003.


Parametrization of Mean Radiative Properties of Optically Thin Steady-State Plasmas and Applications

  • R. Rodriguez (a1) (a2), G. Espinosa (a1), J. M. Gil (a2), J. G. Rubiano (a1) (a2), M. A. Mendoza (a1) (a2), P. Martel (a1) (a2) and E. Minguez (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed