Skip to main content Accessibility help

The Parameter Averaging Technique in Finite-Difference Modeling of Elastic Waves in Combined Structures with Solid, Fluid and Porous Subregions

  • Wei Guan (a1) and Hengshan Hu (a1)


To finite-difference model elastic wave propagation in a combined structure with solid, fluid and porous subregions, a set of modified Biot’s equations are used, which can be reduced to the governing equations in solids, fluids as well as fluid-saturated porous media. Based on the modified Biot’s equations, the field quantities are finite-difference discretized into unified forms in the whole structure, including those on any interface between the solid, fluid and porous subregions. For the discrete equations on interfaces, however, the harmonic mean of shear modulus and the arithmetic mean of the other parameters on both sides of the interfaces are used. These parameter averaging equations are validated by deriving from the continuity conditions on the interfaces. As an example of using the parameter averaging technique, a 2-D finite-difference scheme with a velocity-stress staggered grid in cylindrical coordinates is implemented to simulate the acoustic logs in porous formations. The finite-difference simulations of the acoustic logging in a homogeneous formation agree well with those obtained by the analytical method. The acoustic logs with mud cakes clinging to the borehole well are simulated for investigating the effect of mud cake on the acoustic logs. The acoustic logs with a varying radius borehole embedded in a horizontally stratified formation are also simulated by using the proposed finite-difference scheme.


Corresponding author



Hide All
[1]Alford, R. M., Kelly, K. R., and Boore, D. M., Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics., 39 (1974), 834–842.
[2]Berryman, J. G., and Pride, S. R., Dispersion of waves in porous cylinders with patchy saturation: formulation and torsional waves, J. Acoust. Soc. Am., 117 (2005), 1785–1795.
[3]Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid, I-low-frequency range, J. Acoust. Soc. Am., 28 (1956), 168–178.
[4]Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid, II-higher-frequency range, J. Acoust. Soc. Am., 28 (1956), 178–191.
[5]Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33 (1962), 1482–1498.
[6]Biot, M. A., and Willis, D. G., The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24 (1957), 594–601.
[7]Boutin, C., Bonnet, G., and Bard, P. Y., Green functions and associated sources in infinite and stratified poroelastic media, Geophys. J. R. Astr. Soc., 90 (1987), 521–550.
[8]Chew, W. C., and Weedon, W. H., A3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microw. Opt. Technol. Lett., 7 (1994), 599–604.
[9]Dai, N., Vafidis, A., and Kanasewich, E. R., Wave propagation in heterogeneous, porous media: a velocity-stress, finite-difference method, Geophysics., 60 (1995), 327–340.
[10]Deresiewicz, H., and Skalak, R., On the uniqueness in dynamic poroelasticity, Bull. Seism. Soc. Am., 53 (1963), 783–788.
[11]Dong, H., Kaynia, A. M., Madshus, C., and Hovern, J. M., Sound propagation over layered poro-elastic ground using a finite-difference model, J. Acoust. Soc. Am., 108 (2000), 494–502.
[12]Gassmann, F., Über die elastizität poröser medien, Viertel. Naturforsch. Ges. Zürich., 96 (1951), 1–23.
[13]Guan, W., Hu, H., and He, X., Finite-difference modeling of the monopole acoustic logging in a horizontally stratified porous formation, J. Acoust. Soc. Am., 125 (2009), 1942–1950.
[14]Ge, D., and Yan, Y., Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd edn, XiDian University Press, Xi’an China, 2005.
[15]Johnson, D. L., Koplik, J., and Dashen, R., Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid. Mech., 176 (1987), 379–402.
[16]Masson, Y. J., Pride, S. R., and Nihei, K. T., Finite difference modeling of Biot’s poroelastic equations at seismic frequencies, J. Geophys. Res., 111 (2006), B10305.
[17]Mittet, R., Free-surface boundary conditions for elastic staggered-grid modeling schemes, Geophysics., 67 (2002), 1616–1623.
[18]Norris, A. N., Radiation froma point source and scattering theory in a fluid-saturated porous solid, J. Acoust. Soc. Am., 77 (1985), 2012–2023.
[19]Plona, J., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequency, Appl. Phys. Lett., 36 (1980), 259–261.
[20]Randall, C. J., Multipole borehole acoustic waveforms: synthetic logs with beds and borehole washouts, Geophysics., 56 (1991), 1757–1769.
[21]Roden, J. A., and Gedney, S. D., Convolution PML (CPML):an efficient FDTD implementation of the CFS-PML for arbitrary media, Micro. Opt. Tech. Lett., 27 (2000), 334–339.
[22]Rosenbaum, J. H., Synthetic microseismograms: logging in porous formations, Geophysics., 39 (1974), 14–32.
[23]Schmitt, D. P., Effects of radial layering when logging in saturated porous formations, J. Acoust. Soc. Am., 84 (1988), 2200–2214.
[24]Song, R., Ma, J., and Wang, K., The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media, Appl. Geophys., 2 (2005), 216–222.
[25]Song, R., Parallel Computation of Acoustic Field in Non-Axisymmetric Cased Holes & Theory and Method Studies of Acoustic Cementing Quality Evaluation, Ph.D. Thesis, Jilin University, China, 2008.
[26]Tsang, L., and Rader, D., Numerical evaluation of the transient acoustic waveform due to a point source in a fluid-filled borehole, Geophysics., 44 (1979), 1706–1720.
[27]Vernik, L., Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliclastics, Geophysics., 59 (1994), 420–427.
[28]Wang, T., and Tang, X. M., Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched layer approach, Geophysics., 68 (2003), 1749–1755.
[29]Zhang, J., Quadrangle-gride velocity-stress finite difference method for poroelastic wave equations, Geophys. J. Int., 139 (1999), 171–182.
[30]Zeng, Y. Q., He, J. Q., and Liu, Q. H., The application of the PML in numerical modeling of wave propagation in poroelastic media, Geophysics., 66 (2001), 1258–1266.
[31]Zhu, X., and McMechan, G. A., Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory, Geophysics., 56 (1991), 328–339.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed