Skip to main content Accessibility help
×
Home

On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws

  • Michael Dumbser (a1), Ariunaa Uuriintsetseg (a1) and Olindo Zanotti (a1)

Abstract

In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws. High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkin method recently proposed in [20]. In the Lagrangian framework considered here, the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element. For the space-time basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points. The moving space-time elements are mapped to a reference element using an isoparametric approach, i.e. the space-time mapping is defined by the same basis functions as the weak solution of the PDE. We show some computational examples in one space-dimension for non-stiff and for stiff balance laws, in particular for the Euler equations of compressible gas dynamics, for the resistive relativistic MHD equations, and for the relativistic radiation hydrodynamics equations. Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time.

Copyright

Corresponding author

Corresponding author.Email:michael.dumbser@ing.unitn.it

References

Hide All
[1]Balsara, D.Total variation diminishing scheme for relativistic magnetohydrodynamics. The Astrophysical Journal Supplement Series, 132:83101, 2001.
[2]Balsara, D. and Shu, C.W.Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160:405452, 2000.
[3]Ben-Artzi, M. and Falcovitz, J.A second-order godunov-type scheme for compressible fluid dynamics. Journal of Computational Physics, 55:132, 1984.
[4]Benson, D.J.Computational methods in lagrangian and eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering, 99:235394, 1992.
[5]Bourgeade, A., Le, P.Floch, and Raviart, P.A.An asymptotic expansion for the solution of the generalized Riemann problem. Part II: application to the gas dynamics equations. Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 6:437480, 1989.
[6]Caramana, E.J., Burton, D.E., Shashkov, M.J., and Whalen, P.P.The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. Journal of Computational Physics, 146:227262, 1998.
[7]Carreé, G., Del Pino, S., Despreés, B., and Labourasse, E.A cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. Journal of Computational Physics, 228:51605183, 2009.
[8]Casulli, V.Semi-implicit finite difference methods for the two-dimensional shallow water equations. Journal of Computational Physics, 86:5674, 1990.
[9]Casulli, V. and Cheng, R.T.Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal of Numerical Methods in Fluids, 15:629648,1992.
[10]Cheng, J. and Shu, C.W.A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. Journal of Computational Physics, 227:15671596, 2007.
[11]Cheng, J. and Shu, C.W.A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. Journal of Computational Physics, 229:71917206, 2010.
[12]Cheng, J. and Shu, C.W.Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes. Communications in Computational Physics, 11:11441168,2012.
[13]Courant, R., Isaacson, E., and Rees, M.On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math., 5:243255, 1952.
[14]Dedner, A., Kemm, F., Kroöner, D., Munz, C.D., Schnitzer, T., and Wesenberg, M.Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175:645 673, 2002.
[15]Zanna, L. Del and Bucciantini, N.An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics. Astron. Astroph., 390:11771186,August 2002.
[16]Del Zanna, L., Zanotti, O., Bucciantini, N., and Londrillo, P.ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astronomy & Astrophysics, 473:1130, October 2007.
[17]Despreés, B. and Mazeran, C.Lagrangian gas dynamics in two-dimensions and lagrangian systems. Archive for Rational Mechanics and Analysis, 178:327372, 2005.
[18]Dumbser, M.Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Computers & Fluids, 39:6076, 2010.
[19]Dumbser, M., Balsara, D.S., Toro, E.F., and Munz, C.D.A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. Journal of Computational Physics, 227:8209?253, 2008.
[20]Dumbser, M., Enaux, C., and Toro, E.F.Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. Journal of Computational Physics, 227:3971?001, 2008.
[21]Dumbser, M. and Kaäser, M.Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. Journal of Computational Physics, 221:693723, 2007.
[22]Dumbser, M., Kaäser, M., Titarev, V.A, and Toro, E.F.Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. Journal of Computational Physics, 226:204243, 2007.
[23]Dumbser, M. and Toro, E.F.On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Communications in Computational Physics, 10:635671, 2011.
[24]Dumbser, M. and Zanotti, O.Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. Journal of Computational Physics, 228:69917006, 2009.
[25]Farris, B. D., Li, T. K., Liu, Y. T., and Shapiro, S. L.Relativistic radiation magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D, 78(2):024023, July 2008.
[26]Fedkiw, R., Aslam, T., Merriman, B., and Osher, S.A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 152:457492, 1999.
[27]Fedkiw, R.P., Aslam, T., and Xu, S.The Ghost Fluid method for deflagration and detonation discontinuities. Journal of Computational Physics, 154:393427, 1999.
[28]Ferrari, A.SPH simulation of free surface flow over a sharp-crested weir. Advances in Water Resources, 33:270276, 2010.
[29]Ferrari, A., Dumbser, M., Toro, E.F., and Armanini, A.A New Stable Version of the SPH Method in Lagrangian Coordinates. Communications in Computational Physics, 4:378404, 2008.
[30]Ferrari, A., Dumbser, M., Toro, E.F., and Armanini, A.A new 3D parallel SPH scheme for free surface flows. Computers & Fluids, 38:12031217, 2009.
[31]Ferrari, A., Fraccarollo, L., Dumbser, M., Toro, E.F., and Armanini, A.Three-dimensional flow evolution after a dambreak. Journal of Fluid Mechanics, 663:456477, 2010.
[32]Ferrari, A., Munz, C.D., and Weigand, B.A high order sharp interface method with local timestepping for compressible multiphase flows. Communications in Computational Physics, 9:205230, 2011.
[33]Floch, P. Le and Raviart, P.A.An asymptotic expansion for the solution of the generalized Riemann problem. Part I: General theory. Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 5:179207, 1988.
[34]Giacomazzo, B. and Rezzolla, L.The exact solution of the Riemann problem in relativistic magnetohydrodynamics. Journal of Fluid Mechanics, 562:223259, 2006.
[35]Harten, A., Engquist, B., Osher, S., and Chakravarthy, S.Uniformly high order essentially non-oscillatory schemes, III. Journal of Computational Physics, 71:231303, 1987.
[36]Hidalgo, A. and Dumbser, M.ADER schemes for nonlinear systems of stiff advectiondiffu-sionreaction equations. Journal of Scientific Computing, 48:173189, 2011.
[37]Hirt, C., Amsden, A., and Cook, J.An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14:227253, 1974.
[38]Hui, W.H.The unified coordinate system in computational fluid dynamics. Communications in Computational Physics, 2:577610, 2007.
[39]Jia, Zupeng and Zhang, Shudao. A new high-order discontinuous galerkin spectral finite element method for lagrangian gas dynamics in two-dimensions. Journal of Computational Physics, 230:24962522, 2011.
[40]Jiang, G.S. and Shu, C.W.Efficient implementation of weighted ENO schemes. Journal of Computational Physics, pages 202228, 1996.
[41]Komissarov, S. S.Multidimensional numerical scheme for resistive relativistic magnetohy-drodynamics. Mon. Not. Roy. Astr. Soc., 382:9951004, December 2007.
[42]Lentine, M., Grétarsson, Joón Toómas, and Fedkiw, R.An unconditionally stable fully conservative semi-lagrangian method. Journal of Computational Physics, 230:28572879, 2011.
[43]Liu, W., Cheng, J., and Shu, C.W.High order conservative Lagrangian schemes with LaxWen-droff type time discretization for the compressible Euler equations. Journal of Computational Physics, 228:88728891, 2009.
[44]Maire, P.H.A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. Journal of Computational Physics, 228:23912425, 2009.
[45]Maire, P.H.A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Computers and Fluids, 46(1):341347, 2011.
[46]Maire, P.H.A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. International Journal for Numerical Methods in Fluids, 65:12811294, 2011.
[47]Maire, P.H., Abgrall, R., Breil, J., and Ovadia, J.A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM Journal on Scientific Computing, 29:17811824, 2007.
[48]Maire, P.H. and Breil, J.A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems. International Journal for Numerical Methods in Fluids, 56:14171423, 2007.
[49]Mavriplis, D. J. and Nastase, C. R.On the geometric conservation law for high order discontinuous galerkin discretizations on dynamically deforming meshes. Journal of Computational Physics, 230:42854300, 2011.
[50]Monaghan, J.J.Simulating free surface flows with SPH. Journal of Computational Physics, 110:399406, 1994.
[51]Mulder, W., Osher, S., and Sethian, J.A.Computing interface motion in compressible gas dynamics. Journal of Computational Physics, 100:209228,1992.
[52]Munz, C.D.On Godunov-type schemes for Lagrangian gas dynamics. SIAM Journal on Numerical Analysis, 31:1742, 1994.
[53]Osher, S. and Sethian, J.A.Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:1249, 1988.
[54]Palenzuela, C., Lehner, L., Reula, O., and Rezzolla, L.Beyond ideal MHD: towards a more realistic modeling of relativistic astrophysical plasmas. Mon. Not. R. Astron. Soc., 394:17271740, 2009.
[55]Peery, J.S. and Carroll, D.E.Multi-material ale methods in unstructured grids,. Computer Methods in Applied Mechanics and Engineering, 187:591619, 2000.
[56]Qiu, J.M. and Shu, C.W.Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. Journal of Computational Physics, 230:863889, 2011.
[57]Roe, P.L.Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43:357372, 1981.
[58]Rusanov, V. V.Calculation of Interaction of Non-Steady Shock Waves with Obstacles. J. Comput. Math. Phys. USSR, 1:267279, 1961.
[59]Smith, R.W.AUSM(ALE): a geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme. Journal of Computational Physics, 150:268286, 1999.
[60]Stroud, A.H.Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.
[61]Thorne, K. S.Relativistic radiative transfer - Moment formalisms. Mon. Not. R. Astron. Soc., 194:439473, February 1981.
[62]Titarev, V.A. and Toro, E.F.ADER: Arbitrary high order Godunov approach. Journal of Scientific Computing, 17:609618, 2002.
[63]Titarev, V.A. and Toro, E.F.ADER schemes for three-dimensional nonlinear hyperbolic systems. Journal of Computational Physics, 204:715736, 2005.
[64]Toro, E. F. and Titarev, V. A.Derivative Riemann solvers for systems of conservation laws and ADER methods. Journal of Computational Physics, 212(1):150165, 2006.
[65]Toro, E.F.Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, third edition, 2009.
[66]Toro, E.F. and Titarev, V. A.Solution of the generalized Riemann problem for advection-reaction equations. Proc. Roy. Soc. London, pages 271281, 2002.
[67]Toro, E.F. and Titarev, V.A.ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions. Journal of Computational Physics, 202:196215, 2005.
[68]van der Vegt, J. J. W. and der Ven, H. van. Space?time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation. Journal of Computational Physics, 182:546?585, 2002.
[69]der Ven, H. van and van der Vegt, J. J. W.Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature. Comput. Methods Appl. Mech. Engrg., 191:4747?4780, 2002.
[70]Neumann, J. von and Richtmyer, R.D.A method for the calculation of hydrodynamics shocks. Journal of Applied Physics, 21:232237, 1950.
[71]Del Zanna, L., Bucciantini, N., and Londrillo, P.An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. magnetohydrodynamics. Astronomy and Astrophysics, 400:397413, 2003.
[72]Zanotti, O., Roedig, C., Rezzolla, L., and Zanna, L. Del. General relativistic radiation hydrodynamics of accretion flows - I. Bondi-Hoyle accretion. Mon. Not. Roy. Astr. Soc., 417:28992915, November 2011.

Keywords

On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws

  • Michael Dumbser (a1), Ariunaa Uuriintsetseg (a1) and Olindo Zanotti (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed