Skip to main content Accessibility help
×
Home

Numerical Entropy and Adaptivity for Finite Volume Schemes

  • Gabriella Puppo (a1) and Matteo Semplice (a2)

Abstract

We propose an a-posteriori error/smoothness indicator for standard semi-discrete finite volume schemes for systems of conservation laws, based on the numerical production of entropy. This idea extends previous work by the first author limited to central finite volume schemes on staggered grids. We prove that the indicator converges to zero with the same rate of the error of the underlying numerical scheme on smooth flows under grid refinement. We construct and test an adaptive scheme for systems of equations in which the mesh is driven by the entropy indicator. The adaptive scheme uses a single nonuniform grid with a variable timestep. We show how to implement a second order scheme on such a space-time non uniform grid, preserving accuracy and conservation properties. We also give an example of a p-adaptive strategy.

Copyright

Corresponding author

Corresponding author.Email:gabriella.puppo@polito.it

References

Hide All
[1]Berger, M. J. and Leveque, R. J., Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal., 35(6) (1998), 2298–2316.
[2]Chiavassa, G. and Donat, R., Point value multiscale algorithms for 2D compressible flows, SIAM J. Sci. Comput., 23(3) (2001), 805–823.
[3]Cockburn, B., An introduction to the discontinuous Galerkin method for convection-dominated problems, in Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), Volume 1697, Lect. Notes. Math., 151–268, Springer, Berlin, 1998.
[4]Dawson, C. and Kirby, R., High resolution schemes for conservation laws with locally varying time steps, SIAM J. Sci. Comput., 22(6) (2001), 2256–2281.
[5]Dedner, A., Makridakis, C. and Ohlberger, M., Error control for a class of Runge-Kutta Discontinuos Galerkin methods for non linear conservation laws, SIAM J. Numer. Anal., 45 (2007), 514–538.
[6]Fjordholm, U., Mishra, S. and Tadmor, E., Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws, SAM Report 2001-39, ETH Zurich, 2011.
[7]Giles, M. B. and Süli, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta. Numer., 11 (2002), 145–236.
[8]Godlewski, E. and Raviart, P. A., Numerical approximation of hyperbolic systems of conservation laws, Volume 118, Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
[9]Gottlieb, S., Shu, C.-W. and Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43(1) (2001), 89–112.
[10]Guermond, J.-L., Pasquetti, R. and Popov, B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230(11) (2011), 4248–4267.
[11]Harten, A., The artificial compression method for computation of shocks and contact discontinuities I: single conservation laws, Commun. Pure Appl. Math., 30(5) (1977), 611–638.
[12]Harten, A., Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Commun. Pure Appl. Math., 48(12) (1995), 1305–1342.
[13]Hartmann, R. and Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183(2) (2002), 508–532.
[14]Karni, S. and Kurganov, A., Local error analysis for approximate solutions of hyperbolic conservation laws, Adv. Comput. Math., 22(1) (2005), 79–99.
[15]Karni, S., Kurganov, A. and Petrova, G., A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys., 178(2) (2002), 323–341.
[16]Kröner, D. and Ohlberger, M., A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions, Math. Comput., 69(229) (2000), 25–39.
[17]Kurganov, A. and Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160(1) (2000), 241–282.
[18]Le Veque, R. J., Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 1992.
[19]Le Veque, R. J., CLAWPACK Version 4.3 Users Guide, 2006. http://www.amath.washington.edu/∼claw/.
[20]Levy, D., Puppo, G. and Russo, G., Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput., 22(2) (2000), 656–672.
[21]Marobin, D. and Puppo, G., An Error Indicator for Semidiscrete Schemes, Springer, editor, Computational Fluid Dynamics 2004, pages 103–108, 2006.
[22]Müller, S. and Stiriba, Y., Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput., 30(3) (2007), 493–531.
[23]Ohlberger, M., A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws, Int. J. Numer. Methods Fluids, 59(3) (2009), 333–354.
[24]Osher, S. and Sanders, R., Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comput., 41(164) (1983), 321–336.
[25]Puppo, G., Numerical entropy production on shocks and smooth transitions, in Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 17 (2002), 263–271.
[26]Puppo, G., Numerical entropy production for central schemes, SIAM J. Sci. Comput., 25(4) (2003), 1382–1415.
[27]Qiu, J. and Shu, C.-W., On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes, J. Comput. Phys., 183(1) (2002), 187–209.
[28]Shu, C.-W., High order ENO and WENO schemes for computational fluid dynamics, In High-order methods for computational physics, Volume 9, Lect. Notes Comput. Sci. Eng., pages 439–582, Springer, Berlin, 1999.
[29]Shu, C.-W. and Osher, S., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 77(2) (1988), 439–471.
[30]Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws I, Math. Comput., 49(179) (1987), 91–103.
[31]Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta. Numer., 12 (2003), 451–512.
[32]Tang, H. Z. and Warnecke, G., High resolution schemes for conservation laws and convection-diffusion equations with varying time and space grids, J. Comput. Math., 24(2) (2006), 121–140.
[33]Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner Verlag and J. Wiley, Stuttgart, 1996.

Keywords

Related content

Powered by UNSILO

Numerical Entropy and Adaptivity for Finite Volume Schemes

  • Gabriella Puppo (a1) and Matteo Semplice (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.