Skip to main content Accessibility help
×
Home

Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems

  • Yalchin Efendiev (a1) (a2), Bangti Jin (a3), Presho Michael (a1) and Xiaosi Tan (a1)

Abstract

In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates.

Copyright

Corresponding author

*Email addresses: yalchinrefendiev@gmail.com (Y. Efendiev), bangti.jin@gmail.com (B. Jin), michaelpresho@gmail.com (M. Presho), tanxiaosi@gmail.com (X. Tan)

References

Hide All
[1]Aarnes, J.E., Krogstad, S., and Lie, K.-A.. A hierarchicalmultiscalemethod for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul., 5(2):337363, 2006.
[2]Arbogast, T., Pencheva, G., Wheeler, M.F., and Yotov, I.. A multiscale mortar mixed finite element method. Multiscale Model. Simul., 6(1):319346, 2007.
[3]Babuska, I. and Lipton, R.. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul., 9(1):373406, 2011.
[4]Babušska, I., Tempone, R., and Zouraris, G.E.. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42(2):800825, 2004.
[5]Bal, G., Langmore, I., and Marzouk, Y.. Bayesian inverse problems with Monte Carlo forward models. Inverse Probl. Imaging, 7(1):81105, 2013.
[6]Barrault, M., Maday, Y., Nguyen, N.C., and Patera, A.T.. An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris, 339(9):667672, 2004.
[7]Barth, A., Schwab, C., and Zollinger, N.. Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math., 119(1):123161, 2011.
[8]Boyaval, S.. Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul., 7(1):466494, 2008.
[9]Christen, J.A. and Fox, C.. Markov chain Monte Carlo using an approximation. J. Comput. Graph. Statist., 14(4):795810, 2005.
[10]Cliffe, K.A., Giles, M.B., Scheichl, R., and Teckentrup, A.L.. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci., 14(1):315, 2011.
[11]Efendiev, Y., Galvis, J., and Thomines, F.. A systematic coarse-scale model reduction technique for parameter-dependent flows in highly heterogeneous media and its applications. Multiscale Model. Simul., 10(4):13171343, 2012.
[12]Efendiev, Y., Galvis, J., and Wu, X.-H.. Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys., 230(4):937955, 2011.
[13]Efendiev, Y., Ginting, V., Hou, T., and Ewing, R.. Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys., 220(1):155174, 2006.
[14]Efendiev, Y., Hou, T., and Ginting, V.. Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci., 2(4):553589, 2004.
[15]Efendiev, Y., Hou, T., and Luo, W.. Preconditioning Markov chain Monte Carlo simulations using coarse-scale models. SIAMJ. Sci. Comput., 28(2):776803, 2006.
[16]Efendiev, Y. and Hou, T.Y.. Multiscale Finite Element Methods. Springer, New York, 2009. Theory and applications.
[17]Ghanem, R.G. and Spanos, P.D.. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York, 1991.
[18]Giles, M.. Improved multilevel Monte Carlo convergence using the Milstein scheme. In Monte Carlo and quasi-Monte Carlo methods 2006, pages 343358. Springer, Berlin, 2008.
[19]Giles, M.B.. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607617, 2008.
[20]Ginting, V., Pereira, F., Presho, M., and Wo, S.. Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci., 15(4):691707, 2011.
[21]Heinrich, S.. Multilevel Monte Carlo methods. In Margenov, S., Waśniewski, J., and Yalamov, P., editors, LectureNotes in Computer Science, volume 2179, pages 5867. Springer-Verlag, Berlin, 2001.
[22]Hou, T.Y. and Wu, X.-H.. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134(1):169189, 1997.
[23]Hughes, T.J.R., Feijóo, G.R., Mazzei, L., and Quincy, J.-B.. The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl.Mech. Engrg., 166(1-2):324, 1998.
[24]Ito, K. and Jin, B.. Inverse Problems: Tikhonov Theory and Algorithms. World Scientific, Singapore, 2014.
[25]Jenny, P., Lee, S.H., and Tchelepi, H.A.. Multi-scale finite-volumemethod for elliptic problems in subsurface flow simulation. J. Comput. Phys., 187(1):4767, 2003.
[26]Ketelsen, C., Scheichl, R., and Teckentrup, A.. A hierarchical multilevel markov chain monte carlo algorithm with applications to uncertainty quantification in subsurface flow. Submitted, arXiv:1303.7343.
[27]Loève, M.. Probability theory. II. Springer-Verlag, New York, fourth edition, 1978.
[28]Nguyen, N.C.. A multiscale reduced-basismethod for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys., 227(23):98079822, 2008.
[29]Robert, C.P. and Casella, G.. Monte Carlo Statistical Methods. Springer-Verlag, New York, second edition, 2004.
[30]Rozza, G., Huynh, D.B.P., and Patera, A.T.. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng., 15(3):229275, 2008.
[31]Speight, A.. A multilevel approach to control variates. J. Comput. Finance, 12(4):327, 2009.
[32]Xiu, D. and Karniadakis, G.E.. TheWiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619644, 2002.
[33]Xiu, D. and Karniadakis, G.E.. Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys., 187(1):137167, 2003.

Keywords

Related content

Powered by UNSILO

Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems

  • Yalchin Efendiev (a1) (a2), Bangti Jin (a3), Presho Michael (a1) and Xiaosi Tan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.