Skip to main content Accessibility help

The Lognormal Distribution and Quantum Monte Carlo Data

  • Mervlyn Moodley (a1)


Quantum Monte Carlo data are often afflicted with distributions that resemble lognormal probability distributions and consequently their statistical analysis cannot be based on simple Gaussian assumptions. To this extent a method is introduced to estimate these distributions and thus give better estimates to errors associated with them. This method entails reconstructing the probability distribution of a set of data, with given mean and variance, that has been assumed to be lognormal prior to undergoing a blocking or renormalization transformation. In doing so, we perform a numerical evaluation of the renormalized sum of lognormal random variables. This technique is applied to a simple quantum model utilizing the single-thread Monte Carlo algorithm to estimate the ground state energy or dominant eigenvalue of a Hamiltonian matrix.


Corresponding author



Hide All
[1]Noughabi, H. A. and Arghami, N. R., Monte Carlo comparison of seven normality tests, J. Stat. Comput. Sim., 81 (2011), 965972.
[2]Hetherington, J. H., Observation on the statistical iteration of matrices, Phys. Rev. A, 30 (1984), 27132719.
[3]Romeo, M., Da, V. Costa and Bardou, F., Broad distribution effects in sums of lognormal random variables, Euro. Phys. J. B, 32 (2003), 513525.
[4]Limpert, E., Stahel, W. A., and Abbt, M., Log-normal distributions across the sciences: keys and clues, Bioscience, 51(5) (2001), 341352.
[5]Dufresne, D., The log-normal approximation in financial and other computations, Adv. Appl. Prob., 36 (2004), 747773.
[6]Fenton, L., The sum of lognormal probability distributions in scatter transmission systems, IRE Trans. Commun. Sys., 8 (1960), 5767.
[7]Beaulieu, N. C., Abu-Dayya, A. A., and McLane, P. J., Estimating the distribution of a sum of independent lognormal random variables, IEEE Trans. Commun., 43 (1995), 28692873.
[8]Dufresne, D., Sums of lognormals, in Proceedings of the 43rd Actuarial Research Conference, University of Regina, Regina, Canada, August 2008.
[9]Schleher, D., Generalized Gram-Charlier series with application to the sum of log-normal variates, IEEE Trans. Inform. Theory, 23 (1977), 275280.
[10]Schwartz, S. C. and Yeh, Y. S., On the distribution function and moments of power sums with log-normal components, Bell Systems Tech. J., 61(7) (1982), 14411462.
[11]Mehta, Neelesh al., Approximating a sum of random variables with a lognormal, IEEE Trans. Wirel. Commun., 6 (2007), 26902699.
[12]Beaulieu, N. C. and Xie, Q., On optimal lognormal approximation to lognormal sum distributions, IEEE Trans. Veh. Technol., 53 (2004), 479489.
[13]Beaulieu, N. C. and Rajwani, F., Highly accurate simple closed-form approximations to lognormal sum distributions and densities, IEEE Commun. Lett., 8 (2004), 709711.
[14]Senaratne, D. and Tellambura, C., Numerical computation of the lognormal sum distribution, in Proceedings of the 28th IEEE conference onGlobal telecommunications (GLOBECOM’09), Mehmet Ulema (Ed.), IEEE Press, Piscataway, NJ, USA, (2009), 39663971.
[15]Honerkamp, J., Statistical Physics, Springer-Verlag, Berlin, 1998.
[16]Jona-Lasinio, G., The renormalization group: a probabilistic view, Nuovo Cimento B, 26 (1975), 99119.
[17]Jona-Lasinio, G., Renormalization group and probability theory, Phys. Reports, 352 (2001), 439458.
[18]Press, W. H, Flannery, B. P., Teukolsky, S. and Vetterling, W. T., Numerical Recipes, Cambridge University Press, Cambridge, 1992.
[19]Nightingale, M. P. and Umrigar, C. J., Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics, Advances in Chemical Physics, Vol. 105, Monte Carlo Methods in Chemistry, edited by Ferguson, David M., Ilja Siepmann, J., and Truhlar, Donald G., series editors Prigogine, I. and Rice, Stuart A., John Wiley & Sons, New York, 1999.
[20]Nightingale, M. P., Basics, Quantum Monte Carlo and Statistical Mechanics, in Quantum Monte Carlo Methods in Physics and Chemistry, edited by Nightingale, M. P. and Umrigar, C. J., NATO Science Series, Series C; Mathematical and Physical Sciences-Vol. 525, Kluwer, 1999.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed