Skip to main content Accessibility help

Lagrangian Mesh Model with Regridding for Planar Poiseuille Flow


Many biological settings involve complex fluids that have non-Newtonian mechanical responses that arise from suspended microstructures. In contrast, Newtonian fluids are liquids or mixtures of a simple molecular structure that exhibit a linear relationship between the shear stress and the rate of deformation. In modeling complex fluids, the extra stress from the non-Newtonian contribution must be included in the governing equations.

In this study we compare Lagrangian mesh and Oldroyd-B formulations of fluid-structure interaction in an immersed boundary framework. The start-up phase of planar Poiseuille flow between two parallel plates is used as a test case for the fluid models. For Newtonian and Oldroyd-B fluids there exist analytical solutions which are used in the comparison of simulation and theoretical results. The Lagrangian mesh results are compared with Oldroyd-B using comparable parameters. A regridding algorithm is introduced for the Lagrangian mesh model. We show that the Lagrangian mesh model simulations with regridding produce results in close agreement with the Oldfoyd-B model.


Corresponding author

*Corresponding author. Email addresses: (J. Zhuo), (R. Cortez), (R. Dillon)


Hide All
[1] Alpkvist, E., and Klapper, I. Description of mechanical response including detachment using a novel particle method of biofilm/flow interaction. Wat. Sci. Tech. 55 (2007), 265273.
[2] Bottino, D. C. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147 (1998), 86113.
[3] Chrispell, J., and Fauci, L. Peristaltic pumping of solid particles immersed in a viscoelastic fluid. Mathematical Modelling of Natural Phenomena 6 (2011), 6783.
[4] Chrispell, J. C., Cortez, R., Khismatullin, D. B., and Fauci, L. J. Shape oscillations of a droplet in an oldroyd-b fluid. Physica D: Nonlinear Phenomena 240, 20 (2011), 15931601. Special Issue: Fluid Dynamics: From Theory to Experiment.
[5] Dasgupta, M., Liu, B., Fu, H. C., Berhanu, M., Breuer, K. S., Powers, T. R., and Kudrolli, A. Speed of a swimming sheet in newtonian and viscoelastic fluids. Phys. Rev. E 87 (Jan 2013), 013015.
[6] Dillon, R., and Othmer, H. G. A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J. Theor. Biol. 197, 3 (1999), 295330.
[7] Dillon, R., and Zhuo, J. Using the immersed boundary method to model complex fluidsstructure interaction in sperm motility. DCDS-Series B 15, 2 (2011), 343355.
[8] Du, J., Guy, R. D., and Fogelson, A. L. An immersed boundary method for two-fluid mixtures. J. Comput. Phys. 262 (2014), 231243.
[9] Duarte, A. S. R., Miranda, A. I. P., and Oliveira, P. J. Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems. J. Non-Newtonian Fluid Mech. 154 (2008), 153169.
[10] Eytan, O., and Elad, D. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol. 61 (1999), 221.
[11] Fauci, L. Peristaltic pumping of solid particles. Comput. Fluids 21 (1992), 583.
[12] Grove, R. R., and Chrispell, J. Immersed Boundary Modeling of Journal Bearings in a Viscoelastic Fluid. PhD thesis, Indiana University OF Pennsylvania, 2013.
[13] Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, New York, 1990.
[14] Larson, R. G. The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford, 1998.
[15] Li, M., and Brasseur, J. Non-steady peristaltic transport in finite-length tubes. J. Fluid Mech. 248 (1993), 129151.
[16] Oldroyd, J. On the formulation of rheological equations of state. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 200, 1063 (1950), 523541.
[17] Peskin, C. S. The immersed boundary method. Acta Numer. 11 (2002), 479517.
[18] Teran, J., Fauci, L., and Shelley, M. Peristaltic pumping and irreversibility of a stokesian viscoelastic fluid. Phys. Fluids 20 (2008), 73101.
[19] Teran, J., Fauci, L., and Shelley, M. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 3 (2010), 038101.
[20] Villone, M., Davino, G., Hulsen, M., Greco, F., and Maffettone, P. Particle motion in square channel flow of a viscoelastic liquid: Migration vs. secondary flows. J. Non-Newtonian Fluid Mech. 195, (2013), 18.
[21] Waters, N. D., and King, M. J. Unsteady flow of an elastico-viscous liquid. Rheol. Acta 9 (1970), 345355.
[22] White, F. M. Fluid Mechanics. McGraw-Hill, 1999.
[23] Wróbel, J. K., Cortez, R., and Fauci, L. Modeling viscoelastic networks in stokes flow. Phys. Fluids 26, 11 (2014).
[24] Wróbel, J. K., Lynch, S., Barrett, A., Fauci, L., and Cortez, R. Enhanced flagellar swimming through a compliant viscoelastic network in stokes flow. J. Fluid Mech. 792, 4 (2016), 775797.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed