[1]
Beirão da Veiga, L., Lovadina, C. and Pavarino, L. F., Positive definite balancing Neumann-Neumann preconditioners for nearly incompressible elasticity, Numer. Math., 104 (2006), pp. 271–296.

[2]
Barker, A. T. and Cai, X.-C., Two-levelNewton and hybrid Schwarz preconditioners for fluid-structure interaction, SIAM J. Sci. Comp., 32 (2010), pp. 2395–2417.

[3]
Beirão da Veiga, L., Cho, D., Pavarino, L. F., Scacchi, S., Isogeometric Schwarz preconditioners for linear elasticity systems, Comput. Meth. Appl. Mech. Engrg., 253 (2013), pp. 439–454.

[4]
Bernardi, C. and Maday, Y.. Spectral Methods. In Ciarlet, P. G., Lions, J. L., Eds., Handbook of Numerical Analysis Vol. 5, pp. 209–485, 2007.

[5]
Bernardi, C. and Maday, Y.. Uniform inf–sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci., 9(03):395–414, 1999.

[6]
Boffi, D., Gastaldi, L., On the quadrilateral *Q*
_{2}–*P*
_{1} element for the Stokes problem, Int. J. Numer. Meth. Fluids., 39 (11) (2002), pp. 1001–1011.

[7]
Boffi, D., Brezzi, F. and Fortin, M., Mixed Finite Element Methods and Applications. vol. 44 of Springer Series in Computational Mathematics, Springer-Verlag, 2013.

[8]
Cai, M., Pavarino, L., Widlund, O., Overlapping Schwarz methods with a standard coarse space for almost incompressible linear elasticity, SIAM, J. Sci. Comput., 37 (2) (2015), pp. A811–A831.

[9]
Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.. Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, 2007.

[10]
Dobrowolski, M., On the LBB constant on stretched domains, Math. Nachr., 254 (1) (2003), pp. 64–67.

[11]
Dohrmann, C. R., Widlund, O. B., An overlapping Schwarz algorithm for almost incompressible elasticity, SIAM J. Numer. Anal., 47 (4) (2009), pp. 2897–2923.

[12]
Dohrmann, C. R., Widlund, O. B., Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity, Int. J. Numer. Meth. Eng., 82 (2) (2010), pp. 157–183.

[13]
Dohrmann, C. R. and Widlund, O. B., A BDDC algorithm with deluxe scaling for three-dimensional H(curl) problems, Comm. Pure Appl. Math., 69 (4) (2016), pp. 745–770.

[14]
Dryja, M., Sarkis, M. V., and Widlund, O. B., Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math., 72 (1996), pp. 313–348.

[15]
Hwang, F. N. and Cai, X.-C., A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1603–1611.

[16]
Fischer, P. F., An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 133 (1997), pp. 84–101.

[17]
Girault, V. and Raviart, P. A., Finite element methods for Navier-Stokes Equations, theory and algorithms, Springer-Verlag, Berlin, 1986.

[18]
Griebel, M. and Oswald, P., On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math., 70(2) (1995), pp. 163–180.

[19]
Goldfeld, P., Pavarino, L. F., and Widlund, O. B., Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity, Numer. Math., 95 (2003), pp. 283–324.

[20]
Kim, H. H. and Lee, C.-O., A two-level nonoverlapping Schwarz algorithm for the Stokes problem without primal pressure unknowns, Internat. J. Numer. Methods Engrg., 88 (2011), pp. 1390–1410.

[21]
Klawonn, A., Pavarino, L. F., Overlapping Schwarz methods for mixed linear elasticity and Stokes problems, Comput. Methods Appl. Mech. Engrg., 165 (1) (1998), pp. 233–245.

[22]
Klawonn, A., Rheinbach, O., and Wohlmut, B., Dual-primal iterative substructuring for almost incompressible elasticity, Domain decomposition methods in science and engineering XVI, vol. 55 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2007, pp. 397–404.

[23]
Klawonn, A., Pavarino, L. F., A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems, Numer. Linear. Algebr., 7 (1) (2000), pp. 1–25.

[24]
Le Tallec, P., Patra, A., Non-overlapping domain decomposition methods for adaptive *hp* approximations of the Stokes problem with discontinuous pressure fields, Comput. Meth. Appl. Mech. Engrg., 145 (3) (1997), pp. 361–379.

[25]
Li, J., A dual-primal FETI method for incompressible Stokes equations, Numer. Math., 102 (2005), pp. 257–275.

[26]
Li, J. and Widlund, O. B., BDDC algorithms for incompressible Stokes equations, SIAM J. Numer. Anal., 44 (2006), pp. 2432–2455.

[27]
Maday, Y., Meiron, D., Patera, A. T., and Rønquist, E. M.. Analysis of iterative methods for the steady and unsteady stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput., 14(2):310–337, 1993.

[28]
Mandel, J., Hybrid domain decomposition with unstructured subdomains. Contemp. Math., 157 (1994) pp. 103–103.

[29]
Matthies, G., Tobiska, L., The inf-sup condition for the mapped element in arbitrary space dimensions, Computing, 69 (2) (2002), pp. 119–139.
[30]
Nabben, R., Comparisons between multiplicative and additive schwarz iterations in domain decomposition methods, Numer. Math., 95(1) (2003) pp. 145–162.

[31]
Notay, Y. and Napov, A., Further comparison of additive and multiplicative coarse grid correction, Appl. Numer. Math., 65 (2013), pp. 53–62.

[32]
Pavarino, L. F., Preconditioned mixed spectral element methods for elasticity and Stokes problems, SIAM J. Sci. Comput., 19 (6) (1998), pp. 1941–1957.

[33]
Pavarino, L. F., Indefinite overlapping Schwarz methods for time-dependent Stokes problems, Comput. Methods Appl. Mech. Engrg., 187 (2000), pp. 35–51.

[34]
Pavarino, L. F. and Widlund, O. B., Iterative substructuring methods for spectral element discretizations of elliptic systems. II. Mixed methods for linear elasticity and Stokes flow, SIAM J. Numer. Anal., 37 (2000), pp. 375–402.

[35]
Pavarino, L. F. and Widlund, O. B., Balancing Neumann-Neumann methods for incompressible Stokes equations, Comm. Pure Appl. Math., 55 (2002), pp. 302–335.

[36]
Pavarino, L. F., Widlund, O. B., Zampini, S., BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions, SIAM J. Sci. Comput., 32 (2010), pp. 3604–3626.

[37]
Toselli, A. and Widlund, O. B., Domain Decomposition Methods - Algorithms and Theory, vol. 34 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin Heidelberg New York, 2005.

[38]
Tu, X. and Li, J., A unified dual-primal finite element tearing and interconnecting approach for incompressible Stokes equations, Internat. J. Numer. Methods Engrg.
94 (2013), pp. 128–149.