Skip to main content Accessibility help
×
Home

A High Order Sharp-Interface Method with Local Time Stepping for Compressible Multiphase Flows

  • Angela Ferrari (a1), Claus-Dieter Munz (a1) and Bernhard Weigand (a2)

Abstract

In this paper, a new sharp-interface approach to simulate compressible multiphase flows is proposed. The new scheme consists of a high order WENO finite volume scheme for solving the Euler equations coupled with a high order path-conservative discontinuous Galerkin finite element scheme to evolve an indicator function that tracks the material interface. At the interface our method applies ghost cells to compute the numerical flux, as the ghost fluid method. However, unlike the original ghost fluid scheme of Fedkiw et al. [15], the state of the ghost fluid is derived from an approximate-state Riemann solver, similar to the approach proposed in [25], but based on a much simpler formulation. Our formulation leads only to one single scalar nonlinear algebraic equation that has to be solved at the interface, instead of the system used in [25]. Away from the interface, we use the new general Osher-type flux recently proposed by Dumbser and Toro [13], which is a simple but complete Riemann solver, applicable to general hyperbolic conservation laws. The time integration is performed using a fully-discrete one-step scheme, based on the approaches recently proposed in [5,7]. This allows us to evolve the system also with time-accurate local time stepping. Due to the sub-cell resolution and the subsequent more restrictive time-step constraint of the DG scheme, a local evolution for the indicator function is applied, which is matched with the finite volume scheme for the solution of the Euler equations that runs with a larger time step. The use of a locally optimal time step avoids the introduction of excessive numerical diffusion in the finite volume scheme. Two different fluids have been used, namely an ideal gas and a weakly compressible fluid modeled by the Tait equation. Several tests have been computed to assess the accuracy and the performance of the new high order scheme. A verification of our algorithm has been carefully carried out using exact solutions as well as a comparison with other numerical reference solutions. The material interface is resolved sharply and accurately without spurious oscillations in the pressure field.

Copyright

Corresponding author

References

Hide All
[1]Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125 (1996), 150160.
[2]Abgrall, R. and Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169 (2001), 594623.
[3]Chang, C.-H. and Liou, M.-S., A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+$$–up scheme, J. Comput. Phys., 225 (2007), 840873.
[4]Cockburn, B. and Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), 199224.
[5] M.Dumbser, Balsara, D., Toro, E. F. and Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227 (2008), 82098253.
[6]Dumbser, M., Castro, M., Parés, C. and Toro, E. F., ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows, Comput. Fluids., 38 (2009), 17311748.
[7]Dumbser, M., Enaux, C. and Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227 (2008), 39714001.
[8]Dumbser, M., Hidalgo, A., Castro, M., Parés, C. and Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Meth. Appl. Mech. Eng., 199 (2010), 625647.
[9]Dumbser, M. and Käser, M., Arbitrary high order non–oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221 (2007), 693723.
[10]Dumbser, M., Käser, M., Titarev, V. A. and Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226 (2007), 204243.
[11]Dumbser, M., Käser, M. and Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity, Geophys. J. Int., 171 (2007), 695717.
[12]Dumbser, M. and Munz, C.-D., Building blocks for arbitrary high order discontinuous Galerkin schemes, J. Sci. Comput., 27 (2006), 215230.
[13]Dumbser, M. and Toro, E. F., A simple extension of the Osher Riemann solver to nonconservative hyperbolic systems, J. Sci. Comp., in press. DOI: 10.1007/s10915-010-9400-3
[14]Fedkiw, R. P., Aslam, T. and Xu, S., The ghost fluid method for deflagration and detonation discontinuities, J. Comput. Phys., 154 (1999), 393427.
[15]Fedkiw, R., Aslam, T., Merriman, B. and Osher, S., A Non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), 457492.
[16]Ferrari, A., Dumbser, M., Toro, E. F. and Armanini, A., A new stable version of the SPH method in Lagrangian coordinates, Comm. Comput. Phys., 4(2) (2008), 378404.
[17]Ferrari, A., Dumbser, M., Toro, E. F. and Armanini, A., A new 3D parallel SPH scheme for free surface flows, Comput. Fluids., 38 (2009), 12031217.
[18]Gassner, G., Lörcher, F. and Munz, C. D., A discontinuous Galerkin scheme based on a spacetime expansion II: viscous flow equations in multi dimensions, J. Sci. Comput., 34 (2008), 260286.
[19]Harten, A., Engquist, B., Osher, S. and Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71 (1987), 231303.
[20]Hirt, C. W. and Nichols, B. D., Volume of fluid (VOF) method for dynamics of free boundaries, J. Comput. Phys., 39 (1981), 201225.
[21]Hu, X. Y., Adams, N. A. and Iaccarino, G., On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, J. Comput. Phys., 228 (2009), 65726589.
[22]Jenny, P. and Müller, B. and Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. Comput. Phys., 132 (1997), 91107.
[23]Jiang, G. S. and Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202228.
[24]Liou, M.-S., A sequel to AUSM: AUSM+ˆ, J. Comput. Phys., 129 (1996), 364382.
[25]Liu, T. G., Khoo, B. C. and Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190 (2003), 651681.
[26]Marchandise, E., Remacle, J.-F. and Chevaugeon, N., A quadrature-free discontinuous Galerkin method for the level set equation, J. Comput. Phys., 212 (2006), 338357.
[27]Mulder, W., Osher, S. and Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100 (1992), 209228.
[28]Munz, C.-D., Dumbser, M. and Roller, S., Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature, J. Comput. Phys., 224 (2007), 352364.
[29]Osher, S. and Solomon, F., Upwind differencescheme for hyperbolic conservation laws, Math. Comput., 38 (1982), 339374.
[30]Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Num. Anal., 44 (2006), 300321.
[31]Qiu, J., Dumbser, M. and Shu, C. W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Method. Appl. Math., 194 (2005), 45284543.
[32]Rhebergen, S., Bokhove, O. and van der Vegt, J. J. W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227 (2008), 18871922.
[33]Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), 146159.
[34]Titarev, V. A. and Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204 (2005), 715736.
[35]Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd. ed., Springer, 1999.
[36]Toro, E. F. and Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. Roy. Soc. London. A., 458 (2002), 271281.
[37]Toro, E. F. and Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212 (2006), 150165.
[38]Woodward, P. and Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54 (1984), 115173.

Keywords

Related content

Powered by UNSILO

A High Order Sharp-Interface Method with Local Time Stepping for Compressible Multiphase Flows

  • Angela Ferrari (a1), Claus-Dieter Munz (a1) and Bernhard Weigand (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.