Skip to main content Accessibility help
×
Home

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region

  • Cong Wang (a1), Xian-Tu He (a1) (a2) and Ping Zhang (a1) (a2)

Abstract

Quantum molecular dynamic simulations have been employed to study the equation of state (EOS) of fluid helium under shock compressions. The principal Hugoniot is determined from EOS, where corrections from atomic ionization are added onto the calculated data. Our simulation results indicate that principal Hugoniot shows good agreement with gas gun and laser driven experiments, and maximum compression ratio of 5.16 is reached at 106 GPa.

Copyright

Corresponding author

Corresponding author.Email:zhang_ping@iapcm.ac.cn

References

Hide All
[1]Ernstorfer, R., Harb, M., Hebeisen, C. T., Sciaini, G., Dartigalongue, T., and Miller, R. J. D., The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold, Science, 323 (2009), 1033–1037.
[2]Nellis, W. J., Dynamic compression of materials: metallization of fluid hydrogen at high pressures, Rep. Prog. Phys., 69 (2006), 1479.
[3]Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Moon, S. J., Meyerhofer, D. D., and Collins, G. W., Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa, Phys. Rev. B, 79 (2009), 014112.
[4]Philippe, F., Casner, A., Caillaud, T., Landoas, O., Monteil, M. C., Liberatore, S., Park, H. S., Amendt, P., Robey, H., Sorce, C., Li, C. K., Seguin, F., Rosenberg, M., Petrasso, R., Glebov, V., and Stoeckl, C., Experimental demonstration of X-ray drive enhancement with rugby-shaped hohlraums, Phys. Rev. Lett., 104 (2010), 035004.
[5]Lorenzen, W., Holst, B., and Redmer, R., Demixing of hydrogen and helium at megabar pressures, Phys. Rev. Lett., 102 (2009), 115701.
[6]Stevenson, D. J. and Salpeter, E. E., The phase diagram and transport properties for hydrogen-helium fluid planets, Astrophys. J. Suppl., 35 (1977), 221–237.
[7]Stevenson, D. J. and Salpeter, E. E., The dynamics and helium distribution in hydrogen-helium fluid planets Astrophys. J. Suppl., 35 (1977), 239–261.
[8]Saumon, D., Chabrier, G., and Van Horn, H. M., An equation of state for low-mass stars and giant planets, Astrophys. J. Suppl. Ser., 99 (1995), 713–41.
[9]Ternovoi, V.Ya., Kvitov, S. V., Pyalling, A. A., Filimonov, A. S. and Fortov, V. E., Experimental determination of the conditions for the transition of Jupiters atmosphere to the conducting state, JETP Lett., 79 (2004), 6–9.
[10]Vorberger, J., Tamblyn, I., Militzer, B., and Bonev, S. A., Hydrogen-helium mixtures in the interiors of giant planets, Phys. Rev. B., 75 (2007), 024206.
[11]Perryman, M. A. C., Extra-solar planets, Rep. Prog. Phys., 63 (2000), 1209–1272.
[12]Nellis, W. J., Holmes, N. C., Mitchell, A. C., Trainor, R. J., Governo, G. K., Ross, M., and Young, D. A., Shock Compression of liquid helium to 56 GPa (560 kbar), Phys. Rev. Lett., 53 (1984), 1248.
[13]Eggert, J., Brygoo, S., Loubeyre, P., McWilliams, R. S., Celliers, P. M., Hicks, D. G., Boehly, T. R., Jeanloz, R., and Collins, G.W., Hugoniot data for helium in the ionization regime, Phys. Rev. Lett., 100 (2008), 124503.
[14]Knudson, M. D. and Desjarlais, M. P., Shock compression of quartz to 1.6 TPa: Redefining a pressure standard, Phys. Rev. Lett., 103 (2009), 225501.
[15]Ross, M. and Young, D. A., Helium at high density, Phys. Lett. A, 118 (1986), 463–466.
[16]Chen, Q. F., Zhang, Y., Cai, L. C., Gu, Y.J., and Jing, F. Q., Self-consistent variational calculation of the dense fluid helium in the region of partial ionization, Phys. Plasma., 14 (2007), 012703.
[17]Kowalski, P. M., Mazevet, S., Saumon, D., and Challacombe, M., Equation of state and optical properties of warm dense helium, Phys. Rev. B, 76 (2007), 075112.
[18]Militzer, B., First principles calculations of shock compressed fluid helium, Phys. Rev. Lett., 97 (2006), 175501.
[19]Ross, M., Rogers, F., Winter, N., and Collins, G., Activity expansion calculation of shock-compressed helium: The liquid Hugoniot, Phys. Rev. B, 76 (2007), 020502(R).
[20]Wang, C. and Zhang, P., Ab initio study of shock compressed oxygen, J. Chem. Phys., 132 (2010), 154307.
[21]Wang, C. and Zhang, P., The equation of state and nonmetal-metal transition of benzene under shock compression, J. Appl. Phys., 107 (2010), 083502.
[22]Kresse, G. and Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47 (1993), R558.
[23]Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (1996), 11169.
[24]Lenosky, T.Bickham, S., Kress, J., and Collins, L., Density-functional calculation of the Hugoniot of shocked liquid deuterium, Phys. Rev. B, 61 (2000), 1.
[25]Perdew, J. P., Electronic Structure of Solids, Akademie Verlag, Berlin (1991).
[26]Blöchl, P. E., Projector augmented-wave method, Phys. Rev. B, 50 (1994), 17953.
[27]Noseé, S., A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984), 511.
[28] The time steps have been taken as where a = (3/4πni)1/3 is the ionic sphere radius (и, is the ionic number density), kßT presents the kinetic energy, and тце is the ionic mass.
[29]Holst, B., Redmer, R., and Desjarlais, M. P., Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations, Phys. Rev. B, 77 (2008), 184201.
[30]Mazevet, S., Desjarlais, M. P., Collins, L. A., Kress, J. D., and Magee, N. H., Simulations of the optical properties of warm dense aluminum, Phys. Rev. E, 71 (2005), 016409.
[31]Wang, C., He, X. T., and Zhang, P., Hugoniot of shocked liquid deuterium up to 300 GPa: Quantum molecular dynamic simulations, J. Appl. Phys., 108 (2010), 044909.
[32]Aziz, R. A., Janzen, A. R., and Moldover, M. R., Ab initio calculations for helium: A standard for transport property measurements, Phys. Rev. Lett., 74 (1995), 1586.
[33]Chen, Q. F., private communication, (2010).

Keywords

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region

  • Cong Wang (a1), Xian-Tu He (a1) (a2) and Ping Zhang (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed