Skip to main content Accessibility help

A Finite Volume Upwind-Biased Centred Scheme for Hyperbolic Systems of Conservation Laws: Application to Shallow Water Equations

  • Guglielmo Stecca (a1), Annunziato Siviglia (a1) and Eleuterio F. Toro (a2)


We construct a new first-order central-upwind numerical method for solving systems of hyperbolic equations in conservative form. It applies in multidimensional structured and unstructured meshes. The proposed method is an extension of the UFORCE method developed by Stecca, Siviglia and Toro, in which the upwind bias for the modification of the staggered mesh is evaluated taking into account the smallest and largest wave of the entire Riemann fan. The proposed first-order method is shown to be identical to the Godunov upwind method in applications to a 2 x 2 linear hyperbolic system. The method is then extended to non-linear systems and its performance is assessed by solving the two-dimensional inviscid shallow water equations. Extension to second-order accuracy is carried out using an ADER-WENO approach in the finite volume framework on unstructured meshes. Finally, numerical comparison with current competing numerical methods enables us to identify the salient features of the proposed method.


Corresponding author


Hide All
[1]Arminjon, P. and St-Cyr, A., Nessyahu-Tadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids, Appl. Numer. Math., 46(2):135–155, 2003.
[2]Canestrelli, A., Dumbser, M., Siviglia, A. and Toro, E. F., Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed, Adv. Water Resour., 33(3):291–303, 2010.
[3]Canestrelli, A., Siviglia, A., Dumbser, M. and Toro, E. F., Well-balanced high-order centred schemes for non-conservative hyperbolic systems. Applications to shallow water equations with fixed and mobile bed, Adv. Water Resour., 32(6):834–844, 2009.
[4]Casper, J., Atkins, H. L., A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems, J. Comput. Phys., 106:62–76, 1993.
[5]Dumbser, M., Enaux, C. and Toro, E. F., Finite volume schemes of very high order for stiff hyperbolic balance laws, J. Comput. Phys., 227(8):3971–4001, 2008.
[6]Dumbser, M., Hidalgo, A., Castro, M., Pares, C. and Toro, E. F., FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems, Comput. Method. Appl. M., 199(9– 12):625–647, 2010.
[7]Dumbser, M. and Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221:693–723, 2007.
[8]Dumbser, M., Käser, M., Titarev, V. A. and Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226:204–243, 2007.
[9]Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47:271–306, 1959.
[10]Harten, A., Engquist, B., Osher, S. and Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71:231–303, 1987.
[11]Harten, A., Lax, P. D. and van Leer, B., On upstream differencing and Godunov-type schemes, SIAM Rev., 25(1):35–61, 1983.
[12]Jiang, G. S. and Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126:202–228, 1996.
[13]Jiang, G. S. and Tadmor, E., Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19(6):1892–917,1998.
[14]Kurganov, A., Noelle, S. and Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23(3):707–740, 2001.
[15]Kurganov, A. and Petrova, G., Central schemes and contact discontinuities, ESAIM-Math. Model. Num., 34(6):1259–1275, 2000.
[16]Kurganov, A. and Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numer. Meth. Part. D. E., 21(3):536–552, 2005.
[17]Kurganov, A. and Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160(1):241–282, 2000.
[18]Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure. Appl. Math., VII:159–193, 1954.
[19]Liu, X. D., Osher, S. and Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115:200–212, 1994.
[20]Munz, C. D., On the numerical dissipation of high resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 77:18–39, 1998.
[21]Nessyahu, H. and Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation-laws, J. Comput. Phys., 87(2):408–463, 1990.
[22]Ricchiuto, M. and Bollermann, A., Stabilized residual distribution for shallow water simulations, J. Comput. Phys., 228(4):1071–1115, 2009.
[23]Roe, P. L., Some contributions to the modelling of discontinuous flows, in: Proceedings of the SIAM/AMS Seminar, 1983.
[24]Shu, C. W. and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77:439–471, 1988.
[25]Stecca, G., Siviglia, A. and Toro, E. F., Upwind-biased FORCE schemes with applications to free-surface shallow flows, J. Comput. Phys., 229(18):6362–6380, 2010.
[26]Toro, E. F., Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley and Sons Ltd, 2001.
[27]Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Third Edition. Springer-Verlag, 2009.
[28]Toro, E. F. and Billett, S. J., Centred TVD schemes for hyperbolic conservation laws, IMA J. Numer. Anal., 20:47–79, 2000.
[29]Toro, E. F., Hidalgo, A. and Dumbser, M., FORCE schemes on unstructured meshes I: Conservative hyperbolic systems, J. Comput. Phys., 228(9):3368–3389, 2009.
[30]Toro, E. F., Millington, R. C. and Nejad, L. A. M., Towards very high order Godunov schemes, in: Toro, E. F. (Ed.), Godunov Methods: Theory and Applications, Kluwer/Plenum Academic Publishers, 907–940, 2001.
[31]Toro, E. F. and Siviglia, A., PRICE: primitive centred schemes for hyperbolic systems, Int. J. Numer. Methods Fluids, 42(12):1263–1291, 2003.
[32]Toro, E. F. and Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. R. Soc. A-Math. Phys. Eng. Sci., 458:271–281, 2002.
[33]van Leer, B., Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14:361–370, 1974.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed