[1]
Brown, D. L., Cortez, R. and Minion, M. L., Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys., 168(2), pp. 464–499, 2001.

[2]
Calvo, M. P., Palencia, C., A class of explicit multistep exponential integrators for semilinear problems, Numer. Math., 102, pp. 367–381, 2006.

[3]
Cox, S. and Matthews, P., Exponential time differencing for stiff systems, J. Comput. Phys., 176, pp. 430–455, 2002.

[4]
Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22, pp. 745–762, 1968.

[5]
Erturk, E., Comparison of wide and compact fourth-order formulations of the Navier-Stokes equations, Inter. J. Numer. Meth. Fluids, 60, pp. 992–1010, 2009.

[6]
W. E, and Liu, J.-G., Finite difference schemes for incompressible flows in the velocity-impulse density formulation, J. Comput. Phys., 130, pp. 67–76, 1997.

[7]
W. E, and Liu, J.-G., Gauge finite element method for incompressible flows, Int. J. Num. Meth. Fluids, 34, pp. 701–710, 2000.

[8]
W. E, and Liu, J.-G., Gauge method for viscous incompressible flows, Comm. Math. Sci., 1, pp. 317–332, 2003.

[9]
Gallopoulos, E. and Saad, Y., Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13, pp. 1236–1264, 1992.

[10]
Golub, G., Huang, L.-C., Simon, H., and Tang, W.-P., A fast Poisson solver for the finite difference solution of the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 19, pp. 1606–1624, 1998.

[11]
Guermond, J. L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, pp. 6011–6045, 2006.

[12]
Guermond, J. L. and Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228(8), pp. 2834–2846, 2009.

[13]
Guermond, J. L. and Salgado, A., Error analysis of a fractional time-stepping technique for incompressible flows with variable density, SIAM J. Numer. Anal., 49(3), pp. 917–944, 2011.

[14]
Gunzburger, M. D., Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics, 2003.

[15]
Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows: a guide to theory, practice, and algorithms, Academic Press, INC., 1989.

[16]
Hochbrucky, M. and Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, pp. 1911–1925, 1997.

[17]
Hochbruck, M., Lubich, C. and Selhofer, H., Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, pp. 1552–1574, 1998.

[18]
Hochbruck, M. and Ostermann, A., Exponential integrators, Acta Numerica, 19, pp. 209–286, 2010.

[19]
Hochbruck, M. and Ostermann, A., Explicit exponential Runge-Kuttamethods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, pp. 1069–1090, 2005.

[20]
Hochbruck, M. and Ostermann, A., Exponential multistep methods of Adams-type, BIT Numer. Math., 51, pp. 889–908, 2011.

[21]
Ju, L., Zhang, J., Zhu, L. and Du, Q., Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput., 62, pp. 431–455, 2015.

[22]
Krogstad, S., Generalized integrating factor methods for stiff PDEs, J. Comput. Phys., 203, pp. 72–88, 2005.

[23]
Kassam, A. K. and Trefethen, L. N., Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput., 26, pp. 1214–1233, 2005.

[24]
Rebholz, L. G. and Xiao, M., On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization, Comput. Methods Appl. Mech. Engrg., 294, pp. 259–277, 2015.

[25]
Layton, W., Introduction to the numerical analysis of incompressible viscous flows, Society for Industrial and Applied Mathematics, 2008.

[26]
Loan, C. V., Computational Frameworks for the Fast Fourier Transform, Society for Industrial and Applied Mathematics, 1992.

[27]
Nie, Q., Wan, F., Zhang, Y.-T. and Liu, X., Compact integration factor methods in high spatial dimensions, J. Comput. Phys., 227, pp. 5238–5255, 2008.

[28]
Nie, Q., Zhang, Y.-T. and Zhao, R., Efficient semi-implicit schemes for stiff systems, J. Comput. Phys., 214, pp. 521–537, 2006.

[29]
Nochetto, R. and Pyo, J.-H., Error estimates for semi-discrete gauge methods for the Navier-Stokes equations, Math. Comput., 74, pp. 521–542, 2005.

[30]
Nochetto, R. and Pyo, J.-H., The Gauge-Uzawa finite element method. Part I: the Navier-Stokes equations, SIAM J. Numer. Anal., 43, pp. 1043–1068, 2005.

[31]
Pyo, J.-H. and Shen, J., Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys., 221, pp. 181–197, 2007.

[32]
Temam, R., Sur l’approximation de la solution des équations de navier-stokes par la méthode des pas fractionnaires (ii), Archive for Rational Mechanics and Analysis, 33, pp. 377–385, 1969.

[33]
Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, 1977.

[34]
Tokman, M., Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys., 213, pp. 748–776, 2006.

[35]
Wong, K. L. and Baker, A. J., A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm, Inter. J. Num. Meth. Fluids, 38(2), pp 99–123, 2002.

[36]
Wang, C. and Liu, J.-G., Convergence of gauge method for incompressible flow, Math. Comp., 69(232), pp. 1385–1407, 2000.

[37]
Zhu, L., Ju, L. and Zhao, W., Fast high-order compact exponential time differencing Runge–Kutta methods for second-order semilinear parabolic equations, J. Sci. Comput., 67(3), pp. 1043–1065, 2016.