Skip to main content Accessibility help
×
Home

Exponential Time Differencing Gauge Method for Incompressible Viscous Flows

  • Lili Ju (a1) and Zhu Wang (a1)

Abstract

In this paper, we study an exponential time differencing method for solving the gauge system of incompressible viscous flows governed by Stokes or Navier-Stokes equations. The momentum equation is decoupled from the kinematic equation at a discrete level and is then solved by exponential time stepping multistep schemes in our approach. We analyze the stability of the proposed method and rigorously prove that the first order exponential time differencing scheme is unconditionally stable for the Stokes problem. We also present a compact representation of the algorithm for problems on rectangular domains, which makes FFT-based solvers available for the resulting fully discretized system. Various numerical experiments in two and three dimensional spaces are carried out to demonstrate the accuracy and stability of the proposed method.

Copyright

Corresponding author

*Corresponding author. Email addresses: ju@math.sc.edu (L. Ju), wangzhu@math.sc.edu (Z.Wang)

References

Hide All
[1] Brown, D. L., Cortez, R. and Minion, M. L., Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys., 168(2), pp. 464499, 2001.
[2] Calvo, M. P., Palencia, C., A class of explicit multistep exponential integrators for semilinear problems, Numer. Math., 102, pp. 367381, 2006.
[3] Cox, S. and Matthews, P., Exponential time differencing for stiff systems, J. Comput. Phys., 176, pp. 430455, 2002.
[4] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22, pp. 745762, 1968.
[5] Erturk, E., Comparison of wide and compact fourth-order formulations of the Navier-Stokes equations, Inter. J. Numer. Meth. Fluids, 60, pp. 9921010, 2009.
[6] W. E, and Liu, J.-G., Finite difference schemes for incompressible flows in the velocity-impulse density formulation, J. Comput. Phys., 130, pp. 6776, 1997.
[7] W. E, and Liu, J.-G., Gauge finite element method for incompressible flows, Int. J. Num. Meth. Fluids, 34, pp. 701710, 2000.
[8] W. E, and Liu, J.-G., Gauge method for viscous incompressible flows, Comm. Math. Sci., 1, pp. 317332, 2003.
[9] Gallopoulos, E. and Saad, Y., Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13, pp. 12361264, 1992.
[10] Golub, G., Huang, L.-C., Simon, H., and Tang, W.-P., A fast Poisson solver for the finite difference solution of the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 19, pp. 16061624, 1998.
[11] Guermond, J. L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, pp. 60116045, 2006.
[12] Guermond, J. L. and Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228(8), pp. 28342846, 2009.
[13] Guermond, J. L. and Salgado, A., Error analysis of a fractional time-stepping technique for incompressible flows with variable density, SIAM J. Numer. Anal., 49(3), pp. 917944, 2011.
[14] Gunzburger, M. D., Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics, 2003.
[15] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows: a guide to theory, practice, and algorithms, Academic Press, INC., 1989.
[16] Hochbrucky, M. and Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, pp. 19111925, 1997.
[17] Hochbruck, M., Lubich, C. and Selhofer, H., Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, pp. 15521574, 1998.
[18] Hochbruck, M. and Ostermann, A., Exponential integrators, Acta Numerica, 19, pp. 209286, 2010.
[19] Hochbruck, M. and Ostermann, A., Explicit exponential Runge-Kuttamethods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, pp. 10691090, 2005.
[20] Hochbruck, M. and Ostermann, A., Exponential multistep methods of Adams-type, BIT Numer. Math., 51, pp. 889908, 2011.
[21] Ju, L., Zhang, J., Zhu, L. and Du, Q., Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput., 62, pp. 431455, 2015.
[22] Krogstad, S., Generalized integrating factor methods for stiff PDEs, J. Comput. Phys., 203, pp. 7288, 2005.
[23] Kassam, A. K. and Trefethen, L. N., Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput., 26, pp. 12141233, 2005.
[24] Rebholz, L. G. and Xiao, M., On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization, Comput. Methods Appl. Mech. Engrg., 294, pp. 259277, 2015.
[25] Layton, W., Introduction to the numerical analysis of incompressible viscous flows, Society for Industrial and Applied Mathematics, 2008.
[26] Loan, C. V., Computational Frameworks for the Fast Fourier Transform, Society for Industrial and Applied Mathematics, 1992.
[27] Nie, Q., Wan, F., Zhang, Y.-T. and Liu, X., Compact integration factor methods in high spatial dimensions, J. Comput. Phys., 227, pp. 52385255, 2008.
[28] Nie, Q., Zhang, Y.-T. and Zhao, R., Efficient semi-implicit schemes for stiff systems, J. Comput. Phys., 214, pp. 521537, 2006.
[29] Nochetto, R. and Pyo, J.-H., Error estimates for semi-discrete gauge methods for the Navier-Stokes equations, Math. Comput., 74, pp. 521542, 2005.
[30] Nochetto, R. and Pyo, J.-H., The Gauge-Uzawa finite element method. Part I: the Navier-Stokes equations, SIAM J. Numer. Anal., 43, pp. 10431068, 2005.
[31] Pyo, J.-H. and Shen, J., Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys., 221, pp. 181197, 2007.
[32] Temam, R., Sur l’approximation de la solution des équations de navier-stokes par la méthode des pas fractionnaires (ii), Archive for Rational Mechanics and Analysis, 33, pp. 377385, 1969.
[33] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, 1977.
[34] Tokman, M., Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys., 213, pp. 748776, 2006.
[35] Wong, K. L. and Baker, A. J., A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm, Inter. J. Num. Meth. Fluids, 38(2), pp 99123, 2002.
[36] Wang, C. and Liu, J.-G., Convergence of gauge method for incompressible flow, Math. Comp., 69(232), pp. 13851407, 2000.
[37] Zhu, L., Ju, L. and Zhao, W., Fast high-order compact exponential time differencing Runge–Kutta methods for second-order semilinear parabolic equations, J. Sci. Comput., 67(3), pp. 10431065, 2016.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed