Skip to main content Accessibility help

Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations

  • Deep Ray (a1), Praveen Chandrashekar (a1), Ulrik S. Fjordholm (a2) and Siddhartha Mishra (a3)


We propose an entropy stable high-resolution finite volume scheme to approximate systems of two-dimensional symmetrizable conservation laws on unstructured grids. In particular we consider Euler equations governing compressible flows. The scheme is constructed using a combination of entropy conservative fluxes and entropy-stable numerical dissipation operators. High resolution is achieved based on a linear reconstruction procedure satisfying a suitable sign property that helps to maintain entropy stability. The proposed scheme is demonstrated to robustly approximate complex flow features by a series of benchmark numerical experiments.


Corresponding author

*Corresponding author. Email (D. Ray), (P. Chandrashekar), (U. S. Fjordholm), (S. Mishra)


Hide All
[1]Kyle Anderson, W.. A grid generation and flow solution method for the euler equations on unstructured grids. J. Comput. Phys., 110(1):2338, 1994.
[2]Angrand, F. and Lafon, F. C.. Flux formulation using a fully 2D approximate Roe Riemann solver. In Donato, A. and Oliveri, F., editors, Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, volume 43 of Notes on Numerical Fluid Mechanics (NNFM), pages 1522. Vieweg+Teubner Verlag, 1993.
[3]Arminjon, P., Dervieux, A., Fezoui, L., Steve, H., and Stoufflet, B.. Non-oscillatory schemes for multidimensional Euler calculations with unstructured grids. In Ballmann, J. and Jeltsch, R., editors, Nonlinear Hyperbolic Equations Theory, Computation Methods, and Applications, volume 24 of Notes on Numerical Fluid Mechanics, pages 110. Vieweg+Teubner Verlag, 1989.
[4]Barth, T. J.. Numerical methods for gasdynamic systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (Freiburg/Littenweiler, 1997), volume 5 of Lect. Notes Comput. Sci. Eng., pages 195285. Springer, Berlin, 1999.
[5]Barth, T. J. and Jespersen, D. C.. The Design and Application of Upwind Schemes on Unstructured Meshes. AIAA-89-0366, 1989.
[6]Billey, V., Périaux, J., Perrier, P., and Stoufflet, B.. 2-D and 3-D Euler computations with finite element methods in aerodynamics. In Nonlinear Hyperbolic Problems (St. Etienne, 1986), volume 1270 of Lecture Notes in Math., pages 6481. Springer, Berlin, 1987.
[7]Blazek, J.. Computational Fluid Dynamics: Principles and Applications. Elsevier Science, Oxford, second edition, 2005.
[8]Chandrashekar, P.. Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys., 14(5):12521286, 2013.
[9]Cockburn, B. and Shu, C.-W.. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp., 52(186):411435, 1989.
[10]Colella, P.. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Statist. Comput., 6(1):104117, 1985.
[11]Dafermos, C. M.. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 2010.
[12]Deconinck, H., Roe, P. L., and Struijs, R.. A multidimensional generalization of Roe's flux difference splitter for the Euler equations. Comput. & Fluids, 22(2-3):215222, 1993.
[13]Désidéri, J.-A. and Dervieux, A.. Compressible flow solvers using unstructured grids. In Computational Fluid Dynamics, Vol. 1, 2, volume 88 of von Karman Inst. Fluid Dynam. Lecture Ser., page 115. von Karman Inst. Fluid Dynamics, Rhode-St-Genèse, 1988.
[14]Durlofsky, L. J., Engquist, B., and Osher, S.. Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys., 98(1):6473, 1992.
[15]Fjordholm, U. S., Mishra, S., and Tadmor, E.. Energy preserving and energy stable schemes for the shallow water equations. In Cucker, F., Pinkus, A. and Todd, M., editors, Proc. FoCM (Hong Kong, 2008), London Math. Soc. Lecture Notes Ser. 363, pages 93139, 2009.
[16]Fjordholm, U. S., Mishra, S., and Tadmor, E.. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal., 50(2):544573, 2012.
[17]Fjordholm, U. S.. Mishra, S., and Tadmor, E.. ENO reconstruction and ENO interpolation are stable. Foundations of Computational Mathematics 13(2):139159, 2013.
[18]Fjordholm, U. S., Käppeli, R., Mishra, S., and Tadmor, E.. Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Foundations of Computational Mathematics, pages 165, 2015.
[19]Godlewski, E. and Raviart, P.-A.. Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.
[20]Godunov, S. K.. An interesting class of quasilinear systems. Dokl. Akad. Nauk. SSSR, 139:521523, 1961.
[21]Gottlieb, S., Shu, C.-W., and Tadmor, E.. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43(1):89112 (electronic), 2001.
[22]Harten, A.. On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys., 49(1):151164, 1983.
[23]Hughes, T. J. R., Franca, L. P., and Mallet, M.. A new finite element formulation for computational fluid dynamics. I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Engrg., 54(2):223234, 1986.
[24]Ismail, F. and Roe, P. L.. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys., 228(15):54105436, 2009.
[25]Jameson, A., Schmidt, W., and Turkel, E.. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. In AIAA Paper 1981-1259, page 1, 1981.
[26]Jameson, A. and Mavriplis, D.. Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA Journal, 24:611618, 1986.
[27]Jameson, A.. Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput., 34(2):188208, 2008.
[28]Katz, A. and Sankaran, V.. An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids. J. Sci. Comput., 51(2):375393, 2012.
[29]Kröner, D., Noelle, S., and Rokyta, M.. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numerische Mathematik, 71(4):527560, 1995.
[30]Kröner, D. and Rokyta, M.. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal., 31(2):324343, 1994.
[31]Lefloch, P. G., Mercier, J. M., and Rohde, C.. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal., 40(5):19681992 (electronic), 2002.
[32]Madrane, A., Fjordholm, U. S., Mishra, S., and Tadmor, E.. Entropy conservative and entropy stable finite volume schemes for multi-dimensional conservation laws on unstructured meshes. Technical Report 2012-31, Seminar for Applied Mathematics, ETH Zürich, 2012.
[33]Mavriplis, D. J.. Adaptive mesh generation for viscous flows using delaunay triangulation. J. Comput. Phys., 90(2):271291, 1990.
[34]Mock, M. S.. Systems of conservation laws of mixed type. J. Differential Equations, 37(1):7088, 1980.
[35]Perthame, B. and Qiu, Y.. A variant of van Leer's method for multidimensional systems of conservation laws. J. Comput. Phys., 112(2):370381, June 1994.
[36]Robinet, J.-Ch., Gressier, J., Casalis, G., and Moschetta, J.-M.. Shock wave instability and the carbuncle phenomenon: Same intrinsic origin? J. Fluid Mech., 417:237263, 2000.
[37]Roe, P.L., Nishikawa, H., Ismail, F., and Scalabrin, L.. On carbuncles and other excrescences. In 17th AIAA Computational Fluid Dynamics Conference (Toronto), AIAA Paper 2005-4872, 2005.
[38]Roe, P. L.. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43(2):357372, 1981.
[39]Rostand, P. and Stoufflet, B.. TVD schemes to compute compressible viscous flows on unstructured meshes. In Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications (Aachen, 1988), volume 24 of Notes Numer. Fluid Mech., pages 510520. Vieweg, Braunschweig, 1989.
[40]Shu, C.-W. and Osher, S.. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439471, 1988.
[41]Sod, G. A.. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys., 27(1):131, 1978.
[42]Stoufflet, B.. Implicit finite element methods for the Euler equations. In Numerical Methods for the Euler Equations of Fluid Dynamics (Rocquencourt, 1983), pages 409434. SIAM, Philadelphia, PA, 1985.
[43]Tadmor, E.. Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp., 43(168):369381, 1984.
[44]Tadmor, E.. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer., 12:451512, 2003.
[45]van Albada, G. D., van Leer, B., and Roberts, W. W. Jr.. A comparative study of computational methods in cosmic gas dynamics. In Hussaini, M. Y., van Leer, B., and Van Rosendale, J., editors, Upwind and High-Resolution Schemes, pages 95103. Springer Berlin Heidelberg, 1997.
[46]van Leer, B.. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method [J. Comput. Phys., 32(1):101-136,1979]. J. Comput. Phys., 135(2):227248, 1997. With an introduction by Ch. Hirsch, Commemoration of the 30th anniversary of J. Comput. Phys..
[47]Venkatakrishnan, V.. On the Accuracy of Limiters and Convergence to Steady State Solutions. AIAA-93-0880, 1993.
[48]Venkatakrishnan, V.. Convergence to steady state solutions of the euler equations on unstructured grids with limiters. J. Comput. Phys., 118(1):120130, 1995.
[49]Vijayasundaram, G.. Transonic flow simulations using an upstream centered scheme of Godunov in finite elements. J. Comput. Phys., 63(2):416433, 1986.
[50]Whitaker, D. L., Grossman, B., and Löhner, R.. Two-Dimensional Euler Computations on a Triangular Mesh Using an Upwind, Finite-Volume Scheme. AIAA-89-0365, 1989.
[51]Woodward, P. and Colella, P.. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54(1):115173, 1984.


MSC classification

Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations

  • Deep Ray (a1), Praveen Chandrashekar (a1), Ulrik S. Fjordholm (a2) and Siddhartha Mishra (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed