Skip to main content Accessibility help

Effect of Geometric Conservation Law on Improving Spatial Accuracy for Finite Difference Schemes on Two-Dimensional Nonsmooth Grids


It is well known that grid discontinuities have significant impact on the performance of finite difference schemes (FDSs). The geometric conservation law (GCL) is very important for FDSs on reducing numerical oscillations and ensuring free-stream preservation in curvilinear coordinate system. It is not quite clear how GCL works in finite difference method and how GCL errors affect spatial discretization errors especially in nonsmooth grids. In this paper, a method is developed to analyze the impact of grid discontinuities on the GCL errors and spatial discretization errors. A violation of GCL cause GCL errors which depend on grid smoothness, grid metrics method and finite difference operators. As a result there are more source terms in spatial discretization errors. The analysis shows that the spatial discretization accuracy on non-sufficiently smooth grids is determined by the discontinuity order of grids and can approach one higher order by following GCL. For sufficiently smooth grids, the spatial discretization accuracy is determined by the order of FDSs and FDSs satisfying the GCL can obtain smaller spatial discretization errors. Numerical tests have been done by the second-order and fourth-order FDSs to verify the theoretical results.


Corresponding author

*Corresponding author. Email addresses: (M. Mao), (H. Zhu), (X. Deng), (Y. Min), (H. Liu)


Hide All
[1]Rango, S. D. and Zingg, D.W.. Aerodynamic computations using a higher-order algorithm. AIAA paper 99–0167, 1999.
[2]Rango, S. D. and Zingg, D. W.. Further investigation of a higher-order algorithm for aerodynamic computations. AIAA paper 2000–0823, 2000.
[3] J.A. Ekaterinaris. High-order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences, 41:192300, 2005.
[4]Wang, Z.J., Fidkowski, Krzysztof, and etal. High-order cfd methods: current status and perspective. Int. J. Numer. Meth. Fluids, 00:142, 2012.
[5]Visbal, M.R. and Gaitonde, D.V.. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys., 181:155185, 2002.
[6]Casper, J., Shu, C.W., and Atkins, H.. Comparison of two formulations for high-order accurate essentially nonoscillatory schemes. AIAA Journal, 32:1970–1977, 1994.
[7]Castillo, J.E., Hyman, J.M., Shashkov, M.J., and Steinberg, S.. The sensitivity and accuracy of fourth order finite-difference schemes on nonuniform grids in one dimension. Computers Math. Applic., 30:4155, 1995.
[8]Shu, C.W.. High-order finite difference and finite volume weno schemes and discontinuous galerkin methods for cfd. Int. J. Comput. Fluid Dynamics, 17:107118, 2003.
[9]Pulliam, T.H. and Steger, J.L.. On implicit finite-difference simulations of three-dimensional flow. AIAA Paper 78–10, 1978.
[10]Thomas, P.D. and Lombard, C.K.. The geometric conservation law-a link between finite difference and finite volume methods of flow computation on moving grids. AIAA paper 781208, 1978.
[11]Thomas, P. D. and Lombard, C. K.. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal, 17(10):10301037, 1979.
[12]Zhang, H., Reggio, M., TršŠpanier, J.Y., and Camarero, R.. Discrete form of the gcl for moving meshes and its implementation in cfd schemes. Computers and Fluids, 22(1):923, 1993.
[13]Lesoinne, M. and Farhat, C.. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Eng., 134:7190, 1996.
[14]Guillard, H. and Farhat, C.. On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Methods Appl. Mech. Eng., 190:14671482, 2000.
[15]Geuzaine, P., Grandmont, C., and Farhat, C.. Design and analysis of ale schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. J. Comput. Phys., 191 (2003), pp. ., 191:206227, 2003.
[16]Mavriplis, D.J. and Yang, Z.. Construction of the discrete geometric conservation law for high-order time accurate simulations on dynamic meshes. J. Comput. Phys., 213 (2):557573, 2006.
[17]Sitaraman, J. and Baeder, J.D.. Field velocity approach and geometric conservation law for unsteady flow simulations. AIAA Journal, 44(9):20842094, 2006.
[18]Etienne, S., Garon, A., and Pelletier, D.. Geometric conservation law and finite element methods for ale simulations of incompressible flow. AIAA Paper 2008–733, 2008.
[19]Mavriplis, D.J. and Nastase, C.R.. On the geometric conservation law for high-order discontinuous galerkin discretizations on dynamically deforming meshes. J. Comput. Phys., 230:42854300, 2011.
[20]Sjogreen, B., Yee, H. C., and Vinokur, M.. On high order finite-difference metric discretizations satisfying gcl on moving and deforming grids. Technical report, Lawrence Livermore National Laboratory, LLNL-TR-637397, 2013.
[21]Farhat, C., Geuzainne, P., and Grandmont, C.. The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids. J. Comput. Phys., 174:669694, 2001.
[22]Formaggia, L. and Nobile, F.. Stability analysis of second-order time accurate schemes for ale-fem. Comput. Methods Appl. Mech. Eng., 193:40974116, 2004.
[23]Ou, K. and Jameson, A.. On the temporal and spatial accuracy of spectral difference method on moving deformable grids and the effect of geometry conservation law. AIAA Paper 2010–5032, 2010.
[24]Deng, X., Jiang, Y., Mao, M., Liu, H., and Tu, G.. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows. Science China, 56(10):23612369, 2013.
[25]Nonomura, T., Iizuka, N., and Fujii, K.. Freestream and vortex preservation properties of high-order weno and wcns on curvilinear grids. Computers and Fluids, 39:197214, 2010.
[26]Deng, X. and Zhang, H.. Developing high-order weighted compact nonlinear schemes. J. Comput. Phys., 165:2244, 2000.
[27]Deng, X.. High-order accurate dissipative weighted compact nonlinear schemes. Science in China (Series A) x, 45 (3):356370, 2002.
[28]Deng, X., Liu, X., and Mao, M.. Advances in high-order accurate weighted compact nonlinear schemes. Advances in Mechanics, 37 (3):417427, 2007.
[29]Jiang, G.S. and Shu, C.W.. Efficient implementation of weighted eno schemes. J. Comput. Phys., 126:202228, 1996.
[30]Deng, X., Mao, M., Tu, G., Liu, H., and Zhang, H.. Geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys., 230:11001115, 2011.
[31]Nonomura, T., Terakado, D., Abe, Y., and Fujii, K.. A new technique for finite difference weno with geometric conservation law. AIAA Paper 2013–2569, 2013.
[32]Deng, X., Min, Y., Mao, M., Liu, H., Tu, G., and Zhang, H.. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys., 239:90111, 2013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed